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Notes by Yves Meyer

The history of wavelets is not very old, at most 10 to 15 years. The field 
experienced a fast and impressive start, characterized by a close-knit 
international community of researchers who freely circulated scientific 
information and were driven by the researchers’ youthful enthusiasm. Even as 
the commercial rewards promised to be significant, the ideas were shared, the 
trials were pooled together, and the successes were shared by the community.

There are lots of successes for the community to share. Why? Probably because 
the time is ripe. Fourier techniques were liberated by the appearance of 
windowed Fourier methods that operate locally on a time-frequency approach. 
In another direction, Burt-Adelson’s pyramidal algorithms, the quadrature 
mirror filters, and filter banks and subband coding are available. The 
mathematics underlying those algorithms existed earlier, but new computing 
techniques enabled researchers to try out new ideas rapidly. The numerical 
image and signal processing areas are blooming. 

The wavelets bring their own strong benefits to that environment: a local 
outlook, a multiscaled outlook, cooperation between scales, and a time-scale 
analysis. They demonstrate that sines and cosines are not the only useful 



functions and that other bases made of weird functions serve to look at new 
foreign signals, as strange as most fractals or some transient signals. 

Recently, wavelets were determined to be the best way to compress a huge 
library of fingerprints. This is not only a milestone that highlights the practical 
value of wavelets, but it has also proven to be an instructive process for the 
researchers involved in the project. Our initial intuition generally was that the 
proper way to tackle this problem of interweaving lines and textures was to use 
wavelet packets, a flexible technique endowed with quite a subtle sharpness of 
analysis and a substantial compression capability. However, it was a 
biorthogonal wavelet that emerged victorious and at this time represents the 
best method in terms of cost as well as speed. Our intuitions led one way, but 
implementing the methods settled the issue by pointing us in the right 
direction.

For wavelets, the period of growth and intuition is becoming a time of 
consolidation and implementation. In this context, a toolbox is not only 
possible, but valuable. It provides a working environment that permits 
experimentation and enables implementation. 

Since the field still grows, it has to be vast and open. The Wavelet Toolbox 
product addresses this need, offering an array of tools that can be organized 
according to several criteria:

• Synthesis and analysis tools

• Wavelet and wavelet packets approaches

• Signal and image processing

• Discrete and continuous analyses

• Orthogonal and redundant approaches

• Coding, de-noising and compression approaches

What can we anticipate for the future, at least in the short term? It is difficult 
to make an accurate forecast. Nonetheless, it is reasonable to think that the 
pace of development and experimentation will carry on in many different fields. 
Numerical analysis constantly uses new bases of functions to encode its 
operators or to simplify its calculations to solve partial differential equations. 
The analysis and synthesis of complex transient signals touches musical 
instruments by studying the striking up, when the bow meets the cello string. 
The analysis and synthesis of multifractal signals, whose regularity (or rather 
irregularity) varies with time, localizes information of interest at its 



 

geographic location. Compression is a booming field, and coding and de-noising 
are promising. 

For each of these areas, the Wavelet Toolbox software provides a way to 
introduce, learn, and apply the methods, regardless of the user’s experience. It 
includes a command-line mode and a graphical user interface mode, each very 
capable and complementing to the other. The user interfaces help the novice to 
get started and the expert to implement trials. The command line provides an 
open environment for experimentation and addition to the graphical interface. 

In the journey to the heart of a signal’s meaning, the toolbox gives the traveler 
both guidance and freedom: going from one point to the other, wandering from 
a tree structure to a superimposed mode, jumping from low to high scale, and 
skipping a breakdown point to spot a quadratic chirp. The time-scale graphs of 
continuous analysis are often breathtaking and more often than not 
enlightening as to the structure of the signal.

Here are the tools, waiting to be used. 

Yves Meyer
Professor, Ecole Normale Supérieure de Cachan and Institut de France

Notes by Ingrid Daubechies 

Wavelet transforms, in their different guises, have come to be accepted as a set 
of tools useful for various applications. Wavelet transforms are good to have at 
one’s fingertips, along with many other mostly more traditional tools.

Wavelet Toolbox software is a great way to work with wavelets. The toolbox, 
together with the power of MATLAB® software, really allows one to write 
complex and powerful applications, in a very short amount of time. The 
Graphic User Interface is both user-friendly and intuitive. It provides an 
excellent interface to explore the various aspects and applications of wavelets; 
it takes away the tedium of typing and remembering the various function calls.

Ingrid C. Daubechies
Professor, Princeton University, Department of Mathematics and Program in 
Applied and Computational Mathematics
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Product Overview
Everywhere around us are signals that can be analyzed. For example, there are 
seismic tremors, human speech, engine vibrations, medical images, financial 
data, music, and many other types of signals. Wavelet analysis is a new and 
promising set of tools and techniques for analyzing these signals.

Wavelet Toolbox™ software is a collection of functions built on the MATLAB® 
technical computing environment. It provides tools for the analysis and 
synthesis of signals and images, and tools for statistical applications, using 
wavelets and wavelet packets within the framework of MATLAB. 

The MathWorks™ provides several products that are relevant to the kinds of 
tasks you can perform with the toolbox. For more information about any of 
these products, see the products section of The MathWorks Web site. 

Wavelet Toolbox software provides two categories of tools:

• Command line functions 

• Graphical interactive tools

The first category of tools is made up of functions that you can call directly from 
the command line or from your own applications. Most of these functions are 
M-files, series of statements that implement specialized wavelet analysis or 
synthesis algorithms. You can view the code for these functions using the 
following statement:

type function_name

You can view the header of the function, the help part, using the statement

help function_name

A summary list of the Wavelet Toolbox functions is available to you by typing

help wavelet

You can change the way any toolbox function works by copying and renaming 
the M-file, then modifying your copy. You can also extend the toolbox by adding 
your own M-files.
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The second category of tools is a collection of graphical interface tools that 
afford access to extensive functionality. Access these tools by typing

wavemenu

from the command line.

Note  The examples in this guide are generated using Wavelet Toolbox 
software with the DWT extension mode set to 'zpd' (for zero padding), except 
when it is explicitly mentioned. So if you want to obtain exactly the same 
numerical results, type dwtmode('zpd'), before to execute the example code.

In most of the command line examples, figures are displayed. To clarify the 
presentation, the plotting commands are partially or completely omitted. To 
reproduce the displayed figures exactly, you would need to insert some 
graphical commands in the example code.
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Background Reading
Wavelet Toolbox™ software provides a complete introduction to wavelets and 
assumes no previous knowledge of the area. The toolbox allows you to use 
wavelet techniques on your own data immediately and develop new insights. 

It is our hope that, through the use of these practical tools, you may want to 
explore the beautiful underlying mathematics and theory.

Excellent supplementary texts provide complementary treatments of wavelet 
theory and practice (see “References” on page 6-152). For instance:

• Burke-Hubbard [Bur96] is an historical and up-to-date text presenting the 
concepts using everyday words.

• Daubechies [Dau92], is a classic for the mathematics.

• Kaiser, [Kai94], is a mathematical tutorial, and a physics oriented book.

• Mallat [Mal98] is a 1998 book, which includes recent developments, and 
consequently is one of the most complete.

• Meyer [Mey93] is the “father” of the wavelet books.

• Strang-Nguyen [StrN96], is especially useful for signal processing engineers. 
It offers a clear and easy-to-understand introduction to two central ideas: 
filter banks for discrete signals, and for wavelets. It fully explains the 
connection between the two. Many exercises in the book are drawn from 
Wavelet Toolbox software. 

The Wavelet Digest Internet site (http://www.wavelet.org) provides much 
useful and practical information.
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Installing Wavelet Toolbox™ Software
To install this toolbox on your computer, see the appropriate platform-specific 
MATLAB® installation guide. To determine if the Wavelet Toolbox™ software 
is already installed on your system, check for a subdirectory named wavelet 
within the main toolbox directory or folder.

Wavelet Toolbox software can perform signal or image analysis. For indexed 
images or truecolor images (represented by m-by-n-by-3 arrays of uint8), all 
wavelet functions use floating-point operations. To avoid Out of Memory errors, 
be sure to allocate enough memory to process various image sizes.

The memory can be real RAM or can be a combination of RAM and virtual 
memory. See your operating system documentation for how to configure virtual 
memory.

System Recommendations
While not a requirement, we recommend you obtain Signal Processing 
Toolbox™ and Image Processing Toolbox™ software to use in conjunction with 
the Wavelet Toolbox software. These toolboxes provide complementary 
functionality that give you maximum flexibility in analyzing and processing 
signals and images.

This manual makes no assumption that your computer is running any other 
MATLAB toolboxes. 

Platform-Specific Details
Some details of the use of the Wavelet Toolbox software may depend on your 
hardware or operating system.

Windows Fonts
We recommend you set your operating system to use “Small Fonts.” Set this 
option by clicking the Display icon in your desktop’s Control Panel (accessible 
through the Settings⇒Control Panel submenu). Select the Configuration option, 
and then use the Font Size menu to change to Small Fonts. You’ll have to restart 
Windows™ for this change to take effect.
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Fonts for Non-Windows Platforms
We recommend you set your operating system to use standard default fonts. 

However, for all platforms, if you prefer to use large fonts, some of the labels in 
the GUI figures may be illegible when using the default display mode of the 
toolbox. To change the default mode to accept large fonts, use the wtbxmngr 
function. (For more information see either the wtbxmngr help or its reference 
page.)

Mouse Compatibility
Wavelet Toolbox software was designed for three distinct types of mouse 
control:

Note  The functionality of the middle mouse button and the right mouse 
button can be inverted depending on the platform.

For more information, see “Using the Mouse” on page A-4.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections, 
activate controls

Display a cross-hair to 
show position- 
dependent information

Translate plots up and 
down, and left and 
right

Shift + Option +



Wavelet Applications

1-7

Wavelet Applications
Wavelets have scale aspects and time aspects, consequently every application 
has scale and time aspects. To clarify them we try to untangle the aspects 
somewhat arbitrarily.

For scale aspects, we present one idea around the notion of local regularity. For 
time aspects, we present a list of domains. When the decomposition is taken as 
a whole, the de-noising and compression processes are center points.

Scale Aspects
As a complement to the spectral signal analysis, new signal forms appear. They 
are less regular signals than the usual ones. 

The cusp signal presents a very quick local variation. Its equation is  with t 
close to 0 and 0 < r < 1. The lower r the sharper the signal. 

To illustrate this notion physically, imagine you take a piece of aluminum foil; 
The surface is very smooth, very regular. You first crush it into a ball, and then 
you spread it out so that it looks like a surface. The asperities are clearly 
visible. Each one represents a two-dimension cusp and analog of the one 
dimensional cusp. If you crush again the foil, more tightly, in a more compact 
ball, when you spread it out, the roughness increases and the regularity 
decreases.

Several domains use the wavelet techniques of regularity study: 

• Biology for cell membrane recognition, to distinguish the normal from the 
pathological membranes

• Metallurgy for the characterization of rough surfaces

• Finance (which is more surprising), for detecting the properties of quick 
variation of values

• In Internet traffic description, for designing the services size

Time Aspects
Let’s switch to time aspects. The main goals are

• Rupture and edges detection

• Study of short-time phenomena as transient processes

tr
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As domain applications, we get

• Industrial supervision of gear-wheel

• Checking undue noises in craned or dented wheels, and more generally in 
nondestructive control quality processes

• Detection of short pathological events as epileptic crises or normal ones as 
evoked potentials in EEG (medicine)

• SAR imagery

• Automatic target recognition

• Intermittence in physics

Wavelet Decomposition as a Whole
Many applications use the wavelet decomposition taken as a whole. The 
common goals concern the signal or image clearance and simplification, which 
are parts of de-noising or compression. 

We find many published papers in oceanography and earth studies. 

One of the most popular successes of the wavelets is the compression of FBI 
fingerprints.

When trying to classify the applications by domain, it is almost impossible to 
sum up several thousand papers written within the last 15 years. Moreover, it 
is difficult to get information on real-world industrial applications from 
companies. They understandably protect their own information. 

Some domains are very productive. Medicine is one of them. We can find 
studies on micro-potential extraction in EKGs, on time localization of His 
bundle electrical heart activity, in ECG noise removal. In EEGs, a quick 
transitory signal is drowned in the usual one. The wavelets are able to 
determine if a quick signal exists, and if so, can localize it. There are attempts 
to enhance mammograms to discriminate tumors from calcifications. 

Another prototypical application is a classification of Magnetic Resonance 
Spectra. The study concerns the influence of the fat we eat on our body fat. The 
type of feeding is the basic information and the study is intended to avoid 
taking a sample of the body fat. Each Fourier spectrum is encoded by some of 
its wavelet coefficients. A few of them are enough to code the most interesting 
features of the spectrum. The classification is performed on the coded vectors.
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Fourier Analysis
Signal analysts already have at their disposal an impressive arsenal of tools. 
Perhaps the most well known of these is Fourier analysis, which breaks down 
a signal into constituent sinusoids of different frequencies. Another way to 
think of Fourier analysis is as a mathematical technique for transforming our 
view of the signal from time-based to frequency-based.

For many signals, Fourier analysis is extremely useful because the signal’s 
frequency content is of great importance. So why do we need other techniques, 
like wavelet analysis?

Fourier analysis has a serious drawback. In transforming to the frequency 
domain, time information is lost. When looking at a Fourier transform of a 
signal, it is impossible to tell when a particular event took place.

If the signal properties do not change much over time — that is, if it is what is 
called a stationary signal — this drawback isn’t very important. However, most 
interesting signals contain numerous nonstationary or transitory 
characteristics: drift, trends, abrupt changes, and beginnings and ends of 
events. These characteristics are often the most important part of the signal, 
and Fourier analysis is not suited to detecting them. 

F
Fourier

Transform

A
m

pl
itu

de

Time

A
m

pl
itu

de

Frequency



1 Wavelets: A New Tool for Signal Analysis

1-10

Short-Time Fourier Analysis
In an effort to correct this deficiency, Dennis Gabor (1946) adapted the Fourier 
transform to analyze only a small section of the signal at a time — a technique 
called windowing the signal. Gabor’s adaptation, called the Short-Time Fourier 
Transform (STFT), maps a signal into a two-dimensional function of time and 
frequency.

The STFT represents a sort of compromise between the time- and 
frequency-based views of a signal. It provides some information about both 
when and at what frequencies a signal event occurs. However, you can only 
obtain this information with limited precision, and that precision is determined 
by the size of the window.

While the STFT compromise between time and frequency information can be 
useful, the drawback is that once you choose a particular size for the time 
window, that window is the same for all frequencies. Many signals require a 
more flexible approach — one where we can vary the window size to determine 
more accurately either time or frequency. 
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Wavelet Analysis
Wavelet analysis represents the next logical step: a windowing technique with 
variable-sized regions. Wavelet analysis allows the use of long time intervals 
where we want more precise low-frequency information, and shorter regions 
where we want high-frequency information.

Here’s what this looks like in contrast with the time-based, frequency-based, 
and STFT views of a signal:

You may have noticed that wavelet analysis does not use a time-frequency 
region, but rather a time-scale region. For more information about the concept 
of scale and the link between scale and frequency, see “How to Connect Scale 
to Frequency?” on page 6-68.
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What Can Wavelet Analysis Do?
One major advantage afforded by wavelets is the ability to perform local 
analysis — that is, to analyze a localized area of a larger signal. 

Consider a sinusoidal signal with a small discontinuity — one so tiny as to be 
barely visible. Such a signal easily could be generated in the real world, 
perhaps by a power fluctuation or a noisy switch.

A plot of the Fourier coefficients (as provided by the fft command) of this 
signal shows nothing particularly interesting: a flat spectrum with two peaks 
representing a single frequency. However, a plot of wavelet coefficients clearly 
shows the exact location in time of the discontinuity.

Wavelet analysis is capable of revealing aspects of data that other signal 
analysis techniques miss, aspects like trends, breakdown points, 
discontinuities in higher derivatives, and self-similarity. Furthermore, 
because it affords a different view of data than those presented by traditional 
techniques, wavelet analysis can often compress or de-noise a signal without 
appreciable degradation.

Sinusoid with a small discontinuity

Fourier Coefficients Wavelet Coefficients
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Indeed, in their brief history within the signal processing field, wavelets have 
already proven themselves to be an indispensable addition to the analyst’s 
collection of tools and continue to enjoy a burgeoning popularity today.
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What Is Wavelet Analysis?
Now that we know some situations when wavelet analysis is useful, it is 
worthwhile asking “What is wavelet analysis?” and even more fundamentally, 
“What is a wavelet?”

A wavelet is a waveform of effectively limited duration that has an average 
value of zero. 

Compare wavelets with sine waves, which are the basis of Fourier analysis. 
Sinusoids do not have limited duration — they extend from minus to plus 
infinity. And where sinusoids are smooth and predictable, wavelets tend to be 
irregular and asymmetric.

Fourier analysis consists of breaking up a signal into sine waves of various 
frequencies. Similarly, wavelet analysis is the breaking up of a signal into 
shifted and scaled versions of the original (or mother) wavelet.

Just looking at pictures of wavelets and sine waves, you can see intuitively that 
signals with sharp changes might be better analyzed with an irregular wavelet 
than with a smooth sinusoid, just as some foods are better handled with a fork 
than a spoon.

It also makes sense that local features can be described better with wavelets 
that have local extent.

Number of Dimensions
Thus far, we’ve discussed only one-dimensional data, which encompasses most 
ordinary signals. However, wavelet analysis can be applied to two-dimensional 
data (images) and, in principle, to higher dimensional data. 

This toolbox uses only one- and two-dimensional analysis techniques.

Sine Wave Wavelet (db10)

......
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The Continuous Wavelet Transform
Mathematically, the process of Fourier analysis is represented by the Fourier 
transform:

which is the sum over all time of the signal f(t) multiplied by a complex 
exponential. (Recall that a complex exponential can be broken down into real 
and imaginary sinusoidal components.) 

The results of the transform are the Fourier coefficients , which when 
multiplied by a sinusoid of frequency  yield the constituent sinusoidal 
components of the original signal. Graphically, the process looks like

Similarly, the continuous wavelet transform (CWT) is defined as the sum over 
all time of the signal multiplied by scaled, shifted versions of the wavelet 
function :

The results of the CWT are many wavelet coefficients C, which are a function of 
scale and position. 
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Multiplying each coefficient by the appropriately scaled and shifted wavelet 
yields the constituent wavelets of the original signal:

Scaling
We’ve already alluded to the fact that wavelet analysis produces a time-scale 
view of a signal, and now we’re talking about scaling and shifting wavelets. 
What exactly do we mean by scale in this context?

Scaling a wavelet simply means stretching (or compressing) it. 

To go beyond colloquial descriptions such as “stretching,” we introduce the 
scale factor, often denoted by the letter  If we’re talking about sinusoids, for 
example, the effect of the scale factor is very easy to see:

Signal Constituent wavelets of different scales and positions

...

Wavelet

Transform

a.
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The scale factor works exactly the same with wavelets. The smaller the scale 
factor, the more “compressed” the wavelet.

It is clear from the diagrams that, for a sinusoid , the scale factor is 
related (inversely) to the radian frequency . Similarly, with wavelet analysis, 
the scale is related to the frequency of the signal. We’ll return to this topic later.

Shifting
Shifting a wavelet simply means delaying (or hastening) its onset. 
Mathematically, delaying a function  by k is represented by :

Five Easy Steps to a Continuous Wavelet Transform
The continuous wavelet transform is the sum over all time of the signal 
multiplied by scaled, shifted versions of the wavelet. This process produces 
wavelet coefficients that are a function of scale and position.

f t( ) ψ t( )=

f t( ) ψ 2t( )=

f t( ) ψ 4t( )=

;    a 1=

;    a 1
2
---=

;    a 1
4
---=

ωt( )sin a
ω

f t( ) f t k–( )

Wavelet function
ψ t( ) ψ t k–( )

Shifted wavelet function

 0 0



1 Wavelets: A New Tool for Signal Analysis

1-18

It’s really a very simple process. In fact, here are the five steps of an easy recipe 
for creating a CWT:

1 Take a wavelet and compare it to a section at the start of the original signal.

2 Calculate a number, C, that represents how closely correlated the wavelet is 
with this section of the signal. The higher C is, the more the similarity. More 
precisely, if the signal energy and the wavelet energy are equal to one, C may 
be interpreted as a correlation coefficient.

 Note that the results will depend on the shape of the wavelet you choose.

3 Shift the wavelet to the right and repeat steps 1 and 2 until you’ve covered 
the whole signal.

4 Scale (stretch) the wavelet and repeat steps 1 through 3.

Signal

Wavelet

C = 0.0102

Signal

Wavelet
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5 Repeat steps 1 through 4 for all scales.

When you’re done, you’ll have the coefficients produced at different scales by 
different sections of the signal. The coefficients constitute the results of a 
regression of the original signal performed on the wavelets.

How to make sense of all these coefficients? You could make a plot on which the 
x-axis represents position along the signal (time), the y-axis represents scale, 
and the color at each x-y point represents the magnitude of the wavelet 
coefficient C. These are the coefficient plots generated by the graphical tools.

Signal

Wavelet

C = 0.2247

Large
Coefficients

Small
Coefficients
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These coefficient plots resemble a bumpy surface viewed from above. If you 
could look at the same surface from the side, you might see something like this:

The continuous wavelet transform coefficient plots are precisely the time-scale 
view of the signal we referred to earlier. It is a different view of signal data from 
the time-frequency Fourier view, but it is not unrelated.

Scale and Frequency
Notice that the scales in the coefficients plot (shown as y-axis labels) run from 
1 to 31. Recall that the higher scales correspond to the most “stretched” 
wavelets. The more stretched the wavelet, the longer the portion of the signal 
with which it is being compared, and thus the coarser the signal features being 
measured by the wavelet coefficients.

Thus, there is a correspondence between wavelet scales and frequency as 
revealed by wavelet analysis:

• Low scale a ⇒ Compressed wavelet ⇒ Rapidly changing details ⇒ High 
frequency .
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• High scale a ⇒ Stretched wavelet ⇒ Slowly changing, coarse features ⇒ Low 
frequency .

The Scale of Nature
It’s important to understand that the fact that wavelet analysis does not 
produce a time-frequency view of a signal is not a weakness, but a strength of 
the technique.

Not only is time-scale a different way to view data, it is a very natural way to 
view data deriving from a great number of natural phenomena.

Consider a lunar landscape, whose ragged surface (simulated below) is a result 
of centuries of bombardment by meteorites whose sizes range from gigantic 
boulders to dust specks.

If we think of this surface in cross section as a one-dimensional signal, then it 
is reasonable to think of the signal as having components of different scales — 
large features carved by the impacts of large meteorites, and finer features 
abraded by small meteorites.

ω
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Here is a case where thinking in terms of scale makes much more sense than 
thinking in terms of frequency. Inspection of the CWT coefficients plot for this 
signal reveals patterns among scales and shows the signal’s possibly fractal 
nature.

Even though this signal is artificial, many natural phenomena — from the 
intricate branching of blood vessels and trees, to the jagged surfaces of 
mountains and fractured metals — lend themselves to an analysis of scale.

What’s Continuous About the Continuous Wavelet 
Transform?
Any signal processing performed on a computer using real-world data must be 
performed on a discrete signal — that is, on a signal that has been measured 
at discrete time. So what exactly is “continuous” about it? 

What’s “continuous” about the CWT, and what distinguishes it from the 
discrete wavelet transform (to be discussed in the following section), is the set 
of scales and positions at which it operates. 

Unlike the discrete wavelet transform, the CWT can operate at every scale, 
from that of the original signal up to some maximum scale that you determine 
by trading off your need for detailed analysis with available computational 
horsepower.
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The CWT is also continuous in terms of shifting: during computation, the 
analyzing wavelet is shifted smoothly over the full domain of the analyzed 
function.
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The Discrete Wavelet Transform
Calculating wavelet coefficients at every possible scale is a fair amount of work, 
and it generates an awful lot of data. What if we choose only a subset of scales 
and positions at which to make our calculations? 

It turns out, rather remarkably, that if we choose scales and positions based on 
powers of two — so-called dyadic scales and positions — then our analysis will 
be much more efficient and just as accurate. We obtain such an analysis from 
the discrete wavelet transform (DWT). For more information on DWT, see 
“Algorithms” on page 6-24.

An efficient way to implement this scheme using filters was developed in 1988 
by Mallat (see [Mal89] in “References” on page 6-152). The Mallat algorithm is 
in fact a classical scheme known in the signal processing community as a 
two-channel subband coder (see page 1 of the book Wavelets and Filter Banks, 
by Strang and Nguyen [StrN96]).

This very practical filtering algorithm yields a fast wavelet transform — a box 
into which a signal passes, and out of which wavelet coefficients quickly 
emerge. Let’s examine this in more depth.

One-Stage Filtering: Approximations and Details
For many signals, the low-frequency content is the most important part. It is 
what gives the signal its identity. The high-frequency content, on the other 
hand, imparts flavor or nuance. Consider the human voice. If you remove the 
high-frequency components, the voice sounds different, but you can still tell 
what’s being said. However, if you remove enough of the low-frequency 
components, you hear gibberish.

In wavelet analysis, we often speak of approximations and details. The 
approximations are the high-scale, low-frequency components of the signal. 
The details are the low-scale, high-frequency components. 

The filtering process, at its most basic level, looks like this:



The Discrete Wavelet Transform

1-25

The original signal, S, passes through two complementary filters and emerges 
as two signals. 

Unfortunately, if we actually perform this operation on a real digital signal, we 
wind up with twice as much data as we started with. Suppose, for instance, 
that the original signal S consists of 1000 samples of data. Then the resulting 
signals will each have 1000 samples, for a total of 2000.

These signals A and D are interesting, but we get 2000 values instead of the 
1000 we had. There exists a more subtle way to perform the decomposition 
using wavelets. By looking carefully at the computation, we may keep only one 
point out of two in each of the two 2000-length samples to get the complete 
information. This is the notion of downsampling. We produce two sequences 
called cA and cD.

The process on the right, which includes downsampling, produces DWT 
coefficients.

To gain a better appreciation of this process, let’s perform a one-stage discrete 
wavelet transform of a signal. Our signal will be a pure sinusoid with 
high-frequency noise added to it.

S
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Here is our schematic diagram with real signals inserted into it:

The MATLAB® code needed to generate s, cD, and cA is

s = sin(20.*linspace(0,pi,1000)) + 0.5.*rand(1,1000);
[cA,cD] = dwt(s,'db2');

where db2 is the name of the wavelet we want to use for the analysis.

Notice that the detail coefficients cD are small and consist mainly of a 
high-frequency noise, while the approximation coefficients cA contain much 
less noise than does the original signal.

[length(cA) length(cD)]

ans =
   501  501

You may observe that the actual lengths of the detail and approximation 
coefficient vectors are slightly more than half the length of the original signal. 
This has to do with the filtering process, which is implemented by convolving 
the signal with a filter. The convolution “smears” the signal, introducing 
several extra samples into the result.

1000 data points

~500 DWT coefficients

~500 DWT coefficients

S

cD   High Frequency

cA   Low Frequency
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Multiple-Level Decomposition
The decomposition process can be iterated, with successive approximations 
being decomposed in turn, so that one signal is broken down into many lower 
resolution components. This is called the wavelet decomposition tree.

Looking at a signal’s wavelet decomposition tree can yield valuable 
information.

Number of Levels
Since the analysis process is iterative, in theory it can be continued 
indefinitely. In reality, the decomposition can proceed only until the individual 

S

cA1 cD1

cA2 cD2

cA3 cD3
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details consist of a single sample or pixel. In practice, you’ll select a suitable 
number of levels based on the nature of the signal, or on a suitable criterion 
such as entropy (see “Choosing the Optimal Decomposition” on page 6-144).
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Wavelet Reconstruction
We’ve learned how the discrete wavelet transform can be used to analyze, or 
decompose, signals and images. This process is called decomposition or 
analysis. The other half of the story is how those components can be assembled 
back into the original signal without loss of information. This process is called 
reconstruction, or synthesis. The mathematical manipulation that effects 
synthesis is called the inverse discrete wavelet transform (IDWT).

To synthesize a signal using Wavelet Toolbox™ software, we reconstruct it 
from the wavelet coefficients:

Where wavelet analysis involves filtering and downsampling, the wavelet 
reconstruction process consists of upsampling and filtering. Upsampling is the 
process of lengthening a signal component by inserting zeros between samples:

The toolbox includes commands, like idwt and waverec, that perform 
single-level or multilevel reconstruction, respectively, on the components of 
one-dimensional signals. These commands have their two-dimensional 
analogs, idwt2 and waverec2.
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Signal component Upsampled signal component
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Reconstruction Filters
The filtering part of the reconstruction process also bears some discussion, 
because it is the choice of filters that is crucial in achieving perfect 
reconstruction of the original signal. 

The downsampling of the signal components performed during the 
decomposition phase introduces a distortion called aliasing. It turns out that 
by carefully choosing filters for the decomposition and reconstruction phases 
that are closely related (but not identical), we can “cancel out” the effects of 
aliasing. 

A technical discussion of how to design these filters is available on page 347 of 
the book Wavelets and Filter Banks, by Strang and Nguyen. The low- and 
high-pass decomposition filters (L and H), together with their associated 
reconstruction filters (L' and H'), form a system of what is called quadrature 
mirror filters:

Reconstructing Approximations and Details
We have seen that it is possible to reconstruct our original signal from the 
coefficients of the approximations and details.

S S
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It is also possible to reconstruct the approximations and details themselves 
from their coefficient vectors. As an example, let’s consider how we would 
reconstruct the first-level approximation A1 from the coefficient vector cA1.

We pass the coefficient vector cA1 through the same process we used to 
reconstruct the original signal. However, instead of combining it with the 
level-one detail cD1, we feed in a vector of zeros in place of the detail coefficients 
vector:

The process yields a reconstructed approximation A1, which has the same 
length as the original signal S and which is a real approximation of it.

Similarly, we can reconstruct the first-level detail D1, using the analogous 
process:

The reconstructed details and approximations are true constituents of the 
original signal. In fact, we find when we combine them that

Note that the coefficient vectors cA1 and cD1 — because they were produced by 
downsampling and are only half the length of the original signal — cannot 
directly be combined to reproduce the signal. It is necessary to reconstruct the 
approximations and details before combining them.
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Extending this technique to the components of a multilevel analysis, we find 
that similar relationships hold for all the reconstructed signal constituents. 
That is, there are several ways to reassemble the original signal:

Relationship of Filters to Wavelet Shapes
In the section “Reconstruction Filters” on page 1-30, we spoke of the 
importance of choosing the right filters. In fact, the choice of filters not only 
determines whether perfect reconstruction is possible, it also determines the 
shape of the wavelet we use to perform the analysis. 

To construct a wavelet of some practical utility, you seldom start by drawing a 
waveform. Instead, it usually makes more sense to design the appropriate 
quadrature mirror filters, and then use them to create the waveform. Let’s see 
how this is done by focusing on an example.

Consider the low-pass reconstruction filter (L') for the db2 wavelet.

The filter coefficients can be obtained from the dbaux command:

Lprime = dbaux(2)
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Lprime =
    0.3415    0.5915    0.1585   0.0915

If we reverse the order of this vector (see wrev), and then multiply every even 
sample by –1, we obtain the high-pass filter H':

Hprime =
   0.0915   0.1585    0.5915   0.3415

Next, upsample Hprime by two (see dyadup), inserting zeros in alternate 
positions:

HU =
    0.0915         0   0.1585         0    0.5915         0   0.3415       0

Finally, convolve the upsampled vector with the original low-pass filter:

H2 = conv(HU,Lprime);
plot(H2)

If we iterate this process several more times, repeatedly upsampling and 
convolving the resultant vector with the four-element filter vector Lprime, a 
pattern begins to emerge.
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The curve begins to look progressively more like the db2 wavelet. This means 
that the wavelet’s shape is determined entirely by the coefficients of the 
reconstruction filters. 

This relationship has profound implications. It means that you cannot choose 
just any shape, call it a wavelet, and perform an analysis. At least, you can’t 
choose an arbitrary wavelet waveform if you want to be able to reconstruct the 
original signal accurately. You are compelled to choose a shape determined by 
quadrature mirror decomposition filters.

The Scaling Function
We’ve seen the interrelation of wavelets and quadrature mirror filters. The 
wavelet function  is determined by the high-pass filter, which also produces 
the details of the wavelet decomposition.

There is an additional function associated with some, but not all, wavelets. 
This is the so-called scaling function, . The scaling function is very similar to 
the wavelet function. It is determined by the low-pass quadrature mirror 
filters, and thus is associated with the approximations of the wavelet 
decomposition. 

In the same way that iteratively upsampling and convolving the high-pass 
filter produces a shape approximating the wavelet function, iteratively 
upsampling and convolving the low-pass filter produces a shape approximating 
the scaling function.
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Multistep Decomposition and Reconstruction
A multistep analysis-synthesis process can be represented as

This process involves two aspects: breaking up a signal to obtain the wavelet 
coefficients, and reassembling the signal from the coefficients. 

We’ve already discussed decomposition and reconstruction at some length. Of 
course, there is no point breaking up a signal merely to have the satisfaction of 
immediately reconstructing it. We may modify the wavelet coefficients before 
performing the reconstruction step. We perform wavelet analysis because the 
coefficients thus obtained have many known uses, de-noising and compression 
being foremost among them.

But wavelet analysis is still a new and emerging field. No doubt, many 
uncharted uses of the wavelet coefficients lie in wait. The toolbox can be a 
means of exploring possible uses and hitherto unknown applications of wavelet 
analysis. Explore the toolbox functions and see what you discover.
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Wavelet Packet Analysis
The wavelet packet method is a generalization of wavelet decomposition that 
offers a richer range of possibilities for signal analysis.

In wavelet analysis, a signal is split into an approximation and a detail. The 
approximation is then itself split into a second-level approximation and detail, 
and the process is repeated. For an n-level decomposition, there are n+1 
possible ways to decompose or encode the signal.

In wavelet packet analysis, the details as well as the approximations can be 
split. 

This yields more than  different ways to encode the signal. This is the 
wavelet packet decomposition tree.

The wavelet decomposition tree is a part of this complete binary tree. 

For instance, wavelet packet analysis allows the signal S to be represented as 
A1 + AAD3 + DAD3 + DD2. This is an example of a representation that is not 
possible with ordinary wavelet analysis.

S

A1 D1

A2 D2

A3 D3

= A2 D2 D1+ +

S A1 D1+=

= A3 D3 D2 D1+ + +

22n 1–

S

A1 D1

AA2 DA2

AAA3 DAA3

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3
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Choosing one out of all these possible encodings presents an interesting 
problem. In this toolbox, we use an entropy-based criterion to select the most 
suitable decomposition of a given signal. This means we look at each node of 
the decomposition tree and quantify the information to be gained by 
performing each split.

Simple and efficient algorithms exist for both wavelet packet decomposition 
and optimal decomposition selection. This toolbox uses an adaptive filtering 
algorithm, based on work by Coifman and Wickerhauser (see [CoiW92] in 
“References” on page 6-152), with direct applications in optimal signal coding 
and data compression. 

Such algorithms allow the Wavelet Packet 1-D and Wavelet Packet 2-D tools 
to include “Best Level” and “Best Tree” features that optimize the 
decomposition both globally and with respect to each node.
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History of Wavelets
From an historical point of view, wavelet analysis is a new method, though its 
mathematical underpinnings date back to the work of Joseph Fourier in the 
nineteenth century. Fourier laid the foundations with his theories of frequency 
analysis, which proved to be enormously important and influential.

The attention of researchers gradually turned from frequency-based analysis 
to scale-based analysis when it started to become clear that an approach 
measuring average fluctuations at different scales might prove less sensitive to 
noise. 

The first recorded mention of what we now call a “wavelet” seems to be in 1909, 
in a thesis by Alfred Haar.

The concept of wavelets in its present theoretical form was first proposed by 
Jean Morlet and the team at the Marseille Theoretical Physics Center working 
under Alex Grossmann in France.

The methods of wavelet analysis have been developed mainly by Y. Meyer and 
his colleagues, who have ensured the methods’ dissemination. The main 
algorithm dates back to the work of Stephane Mallat in 1988. Since then, 
research on wavelets has become international. Such research is particularly 
active in the United States, where it is spearheaded by the work of scientists 
such as Ingrid Daubechies, Ronald Coifman, and Victor Wickerhauser.

Barbara Burke Hubbard describes the birth, the history, and the seminal 
concepts in a very clear text. See The World According to Wavelets, A.K. Peters, 
Wellesley, 1996.

The wavelet domain is growing up very quickly. A lot of mathematical papers 
and practical trials are published every month.
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An Introduction to the Wavelet Families
Several families of wavelets that have proven to be especially useful are 
included in this toolbox. What follows is an introduction to some wavelet 
families. 

• “Haar” on page 1-41

• “Daubechies” on page 1-42

• “Biorthogonal” on page 1-43

• “Coiflets” on page 1-45

• “Symlets” on page 1-45

• “Morlet” on page 1-46

• “Mexican Hat” on page 1-46

• “Meyer” on page 1-47

• “Other Real Wavelets” on page 1-47

• “Complex Wavelets” on page 1-47

To explore all wavelet families on your own, check out the Wavelet Display 
tool:

1 Type wavemenu at the MATLAB® command line. The Wavelet Toolbox 
Main Menu appears.
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2 Click the Wavelet Display menu item. The Wavelet Display tool appears.

3 Select a family from the Wavelet menu at the top right of the tool.

4 Click the Display button. Pictures of the wavelets and their associated 
filters appear.

5 Obtain more information by clicking the information buttons located at the 
right.
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Haar
Any discussion of wavelets begins with Haar wavelet, the first and simplest. 
Haar wavelet is discontinuous, and resembles a step function. It represents the 
same wavelet as Daubechies db1. See “Haar” on page 6-75 for more detail.
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Daubechies
Ingrid Daubechies, one of the brightest stars in the world of wavelet research, 
invented what are called compactly supported orthonormal wavelets — thus 
making discrete wavelet analysis practicable. 

The names of the Daubechies family wavelets are written dbN, where N is the 
order, and db the “surname” of the wavelet. The db1 wavelet, as mentioned 
above, is the same as Haar wavelet. Here are the wavelet functions psi of the 
next nine members of the family:

You can obtain a survey of the main properties of this family by typing 
waveinfo('db') from the MATLAB command line. See “Daubechies Wavelets: 
dbN” on page 6-74 for more detail.
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Biorthogonal
This family of wavelets exhibits the property of linear phase, which is needed 
for signal and image reconstruction. By using two wavelets, one for 
decomposition (on the left side) and the other for reconstruction (on the right 
side) instead of the same single one, interesting properties are derived.
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You can obtain a survey of the main properties of this family by typing 
waveinfo('bior') from the MATLAB command line. See “Biorthogonal 
Wavelet Pairs: biorNr.Nd” on page 6-78 for more detail.
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Coiflets
Built by I. Daubechies at the request of R. Coifman. The wavelet function has 
2N moments equal to 0 and the scaling function has 2N-1 moments equal to 0. 
The two functions have a support of length 6N-1. You can obtain a survey of the 
main properties of this family by typing waveinfo('coif') from the MATLAB 
command line. See “Coiflet Wavelets: coifN” on page 6-77 for more detail.

Symlets
The symlets are nearly symmetrical wavelets proposed by Daubechies as 
modifications to the db family. The properties of the two wavelet families are 
similar. Here are the wavelet functions psi.

You can obtain a survey of the main properties of this family by typing 
waveinfo('sym') from the MATLAB command line. See “Symlet Wavelets: 
symN” on page 6-76 for more detail.

0 5 10 15
−1

0

1

0 5 10
−1

0

1

0 2 4

−1

0

1

coif1

0 5 10 15 20

−1

0

1

0 5 10 15 20 25

−1

0

1

coif2 coif3 coif4 coif5

0 5 10 15

−1

0

1

0 5 10

−1

0

1

0 5 10
−1

0

1

0 1 2 3

−1

0

1

0 2 4

−1

0

1

sym2
0 2 4 6

−1

0

1

0 2 4 6 8

−1

0

1

sym3 sym4 sym5

sym6 sym7 sym8



1 Wavelets: A New Tool for Signal Analysis

1-46

Morlet
This wavelet has no scaling function, but is explicit.

You can obtain a survey of the main properties of this family by typing 
waveinfo('morl') from the MATLAB command line. See “Morlet Wavelet: 
morl” on page 6-83 for more detail.

Mexican Hat
This wavelet has no scaling function and is derived from a function that is 
proportional to the second derivative function of the Gaussian probability 
density function.

 You can obtain a survey of the main properties of this family by typing 
waveinfo('mexh') from the MATLAB command line. See “Mexican Hat 
Wavelet: mexh” on page 6-82 for more information.
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Meyer
The Meyer wavelet and scaling function are defined in the frequency domain.

You can obtain a survey of the main properties of this family by typing 
waveinfo('meyer') from the MATLAB command line. See “Meyer Wavelet: 
meyr” on page 6-80 for more detail.

Other Real Wavelets
Some other real wavelets are available in the toolbox:

• Reverse Biorthogonal 

• Gaussian derivatives family

• FIR based approximation of the Meyer wavelet

See “Additional Real Wavelets” on page 6-84 for more information. 

Complex Wavelets
Some complex wavelet families are available in the toolbox:

• Gaussian derivatives

• Morlet 

• Frequency B-Spline

• Shannon

See “Complex Wavelets” on page 6-86 for more information. 
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2

Using Wavelets

This chapter takes you step-by-step through examples that teach you how to use the graphical tools 
and command line functions. 

Introduction to Wavelet Toolbox™ GUIs and 
Functions (p. 2-3)

Overview of available graphical user interfaces and 
functions

One-Dimensional Continuous Wavelet 
Analysis (p. 2-4)

Using 1-D continuous wavelet analysis

One-Dimensional Complex Continuous 
Wavelet Analysis (p. 2-20)

Using 1-D complex continuous wavelet analysis

One-Dimensional Discrete Wavelet Analysis 
(p. 2-29)

Using 1-D discrete wavelet analysis

Two-Dimensional Discrete Wavelet Analysis 
(p. 2-66)

Using 2-D discrete wavelet analysis

Wavelets: Working with Images (p. 2-97) Using wavelets with images

One-Dimensional Discrete Stationary 
Wavelet Analysis (p. 2-104)

Using 1-D discrete stationary wavelet analysis

Two-Dimensional Discrete Stationary 
Wavelet Analysis (p. 2-122)

Using 2-D discrete stationary wavelet analysis

One-Dimensional Wavelet Regression 
Estimation (p. 2-140)

Using 1-D wavelet regression estimation

One-Dimensional Wavelet Density 
Estimation (p. 2-150)

Using 1-D wavelet density estimation

One-Dimensional Variance Adaptive 
Thresholding of Wavelet Coefficients 
(p. 2-158)

Using 1-D variance adaptive thresholding of 
wavelet coefficients
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One-Dimensional Selection of Wavelet 
Coefficients Using the Graphical Interface 
(p. 2-168)

Using 1-D selection of wavelet coefficients using the 
GUI

Two-Dimensional Selection of Wavelet 
Coefficients Using the Graphical Interface 
(p. 2-178)

Using 2-D selection of wavelet coefficients using the 
GUI

One-Dimensional Extension (p. 2-186) Using 1-D extension

Two-Dimensional Extension (p. 2-195) Using 2-D extension

Image Fusion (p. 2-199) Fusing images

One-Dimensional Fractional Brownian 
Motion Synthesis (p. 2-208)

Performing 1-D fractional Brownian motion 
synthesis

New Wavelet for CWT (p. 2-216) Designing a new wavelet for CWT

Multivariate Wavelet De-noising (p. 2-228) Performing multivariate wavelet de-noising

Multiscale Principal Components Analysis 
(p. 2-247)

Performing multiscale PCA

One-Dimensional Multisignal Analysis 
(p. 2-261)

Using 1-D multisignal discrete wavelet analysis



Introduction to Wavelet Toolbox™ GUIs and Functions

2-3

Introduction to Wavelet Toolbox™ GUIs and Functions
Wavelet Toolbox™ software contains graphical tools and command line 
functions that let you 

• Examine and explore properties of individual wavelets and wavelet packets

• Examine statistics of signals and signal components

• Perform a continuous wavelet transform of a one-dimensional signal

• Perform discrete analysis and synthesis of one- and two-dimensional signals

• Perform wavelet packet analysis of one- and two-dimensional signals (see 
“Using Wavelet Packets” on page 5-1)

• Compress and remove noise from signals and images

In addition to the above, the toolbox makes it easy to customize the 
presentation and visualization of your data. You choose 

• Which signals to display

• A region of interest to magnify

• A coloring scheme for display of wavelet coefficient details

Note  All the graphical user interface tools described in this chapter let you 
import information from and export information to either disk or workspace. 
For more information, see “File Menu Options” on page A-10.
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One-Dimensional Continuous Wavelet Analysis
This section takes you through the features of continuous wavelet analysis 
using Wavelet Toolbox™ software. 

The toolbox requires only one function for continuous wavelet analysis: cwt. 
You’ll find full information about this function in its reference page.

In this section, you’ll learn how to

• Load a signal

• Perform a continuous wavelet transform of a signal

• Produce a plot of the coefficients

• Produce a plot of coefficients at a given scale

• Produce a plot of local maxima of coefficients across scales

• Select the displayed plots

• Switch from scale to pseudo-frequency information

• Zoom in on detail

• Display coefficients in normal or absolute mode

• Choose the scales at which analysis is performed

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method. 

The final subsection discusses how to exchange signal and coefficient 
information between the disk and the graphical tools.
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Continuous Analysis Using the Command Line
This example involves a noisy sinusoidal signal.

1 Load a signal.

From the MATLAB® prompt, type

load noissin; 

You now have the signal noissin in your workspace:

whos

2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(noissin,1:48,'db4');

Name Size Bytes Class

noissin 1x1000 8000 double array 
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The arguments to cwt specify the signal to be analyzed, the scales of the 
analysis, and the wavelet to be used. The returned argument c contains the 
coefficients at various scales. In this case, c is a 48-by-1000 matrix with each 
row corresponding to a single scale.

3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when 
present, causes cwt to produce a plot of the absolute values of the continuous 
wavelet transform coefficients.

The cwt command can accept more arguments to define the different 
characteristics of the produced plot. For more information, see the cwt 
reference page.

c = cwt(noissin,1:48,'db4','plot');

A plot appears.

Of course, coefficient plots generated from the command line can be 
manipulated using ordinary MATLAB graphics commands. 
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4 Choose scales for the analysis.

The second argument to cwt gives you fine control over the scale levels on 
which the continuous analysis is performed. In the previous example, we 
used all scales from 1 to 48, but you can construct any scale vector subject to 
these constraints:

- All scales must be real positive numbers.

- The scale increment must be positive.

- The highest scale cannot exceed a maximum value depending on the 
signal.

Let’s repeat the analysis using every other scale from 2 to 128. Type

c = cwt(noissin,2:2:128,'db4','plot');

A new plot appears:

This plot gives a clearer picture of what’s happening with the signal, 
highlighting the periodicity.

Absolute Values of Ca,b Coefficients for a =  2 4 6 8 10 ...

time (or space) b

sc
al

es
 a

100 200 300 400 500 600 700 800 900 1000
  2

 10

 18

 26

 34

 42

 50

 58

 66

 74

 82

 90

 98

106

114

122



2 Using Wavelets

2-8

Continuous Analysis Using the Graphical Interface
We now use the Continuous Wavelet 1-D tool to analyze the same noisy 
sinusoidal signal we examined earlier using the command line interface in 
“Continuous Analysis Using the Command Line” on page 2-5.

1 Start the Continuous Wavelet 1-D Tool. From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Continuous Wavelet 1-D menu item.

The continuous wavelet analysis tool for one-dimensional signal data 
appears.
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2 Load a signal.

Choose the File⇒Load Signal menu option.

When the Load Signal dialog box appears, select the demo MAT-file 
noissin.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. 

The noisy sinusoidal signal is loaded into the Continuous Wavelet 1-D tool.

The default value for the sampling period is equal to 1 (second).

3 Perform a Continuous Wavelet Transform.

To start our analysis, let’s perform an analysis using the db4 wavelet at 
scales 1 through 48, just as we did using command line functions in the 
previous section.

In the upper right portion of the Continuous Wavelet 1-D tool, select the 
db4 wavelet and scales 1–48.

Select db4

Select scales 1 to 48 in steps of 1
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4 Click the Analyze button.

After a pause for computation, the tool displays the coefficients plot, the 
coefficients line plot corresponding to the scale a = 24, and the local maxima 
plot, which displays the chaining across scales (from a = 48 down to a = 1) of 
the coefficients local maxima.

.

5 View Wavelet Coefficients Line.

Select another scale a = 40 by clicking in the coefficients plot with the right 
mouse button. See step 9 below to know, more precisely, how to select the 
desired scale.

Click the New Coefficients Line button. The tool updates the plot.
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6 View Maxima Line.

Click the Refresh Maxima Line button, the local maxima plot displays the 
chaining across scales of the coefficients local maxima from a = 40 down to 
a = 1.

Hold down the right mouse button over the coefficients plot. The position of 
the mouse is given by the Info frame (located at the bottom of the screen) in 
terms of location (X) and scale (Sca).
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7 Switch from scale to Pseudo-Frequency Information.

Using the radio button on the right part of the screen, select Frequencies 
instead of Scales. Again hold down the right mouse button over the 
coefficients plot, the position of the mouse is given in terms of location (X) 
and frequency (Frq) in Hertz.
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This facility allows you to interpret scale in terms of an associated 
pseudo-frequency, which depends on the wavelet and the sampling period. 
For more information on the connection between scale and frequency, see 
“How to Connect Scale to Frequency?” on page 6-68.

8 Deselect the last two plots using the check boxes in the Selected Axes 
frame.
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.

9 Zoom in on detail.

Drag a rubber band box (by holding down the left mouse button) over the 
portion of the signal you want to magnify.

.

10 Click the X+ button (located at the bottom of the screen) to zoom horizontally 
only.
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The Continuous Wavelet 1-D tool enlarges the displayed signal and 
coefficients plot (for more information on zooming, see “Connection of Plots” on 
page A-3).

As with the command line analysis on the preceding pages, you can change 
the scales or the analyzing wavelet and repeat the analysis. To do this, just 
edit the necessary fields and click the Analyze button.

11 View normal or absolute coefficients.

The Continuous Wavelet 1-D tool allows you to plot either the absolute 
values of the wavelet coefficients, or the coefficients themselves.

More generally, the coefficients coloration can be done in several different 
ways. For more details on the Coloration Mode, see “Controlling the 
Coloration Mode” on page A-7.
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Choose either one of the absolute modes or normal modes from the 
Coloration Mode menu. In normal modes, the colors are scaled between the 
minimum and maximum of the coefficients. In absolute modes, the colors are 
scaled between zero and the maximum absolute value of the coefficients.

The coefficients plot is redisplayed in the mode you select.

Importing and Exporting Information from the 
Graphical Interface
The Continuous Wavelet 1-D graphical interface tool lets you import 
information from and export information to disk.

You can

• Load signals from disk into the Continuous Wavelet 1-D tool.

• Save wavelet coefficients from the Continuous Wavelet 1-D tool to disk.

Loading Signals into the Continuous Wavelet 1-D Tool
To load a signal you’ve constructed in your MATLAB workspace into the 
Continuous Wavelet 1-D tool, save the signal in a MAT-file (with extension 
mat or other). 

For instance, suppose you’ve designed a signal called warma and want to 
analyze it in the Continuous Wavelet 1-D tool.

save warma warma

Absolute Mode Normal Mode
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The workspace variable warma must be a vector.

sizwarma = size(warma) 

sizwarma =
           1        1000

To load this signal into the Continuous Wavelet 1-D tool, use the menu option 
File⇒Load Signal. A dialog box appears that lets you select the appropriate 
MAT-file to be loaded.

Note  The first one-dimensional variable encountered in the file is considered 
the signal. Variables are inspected in alphabetical order.

Saving Wavelet Coefficients
The Continuous Wavelet 1-D tool lets you save wavelet coefficients to disk. The 
toolbox creates a MAT-file in the current directory with the extension wc1 and 
a name you give it.

To save the continuous wavelet coefficients from the present analysis, use the 
menu option File⇒Save⇒Coefficients.

A dialog box appears that lets you specify a directory and filename for storing 
the coefficients.

Consider the example analysis:

 File⇒Example Analysis⇒with haar at scales [1:1:64] −−> Cantor curve.
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After saving the continuous wavelet coefficients to the file cantor.wc1, load the 
variables into your workspace:

load cantor.wc1 -mat
whos

Variables coefs and scales contain the continuous wavelet coefficients and 
the associated scales. More precisely, in the above example, coefs is a 
64-by-2188 matrix, one row for each scale; and scales is the 1-by-64 vector 
1:64. Variable wname contains the wavelet name.

Name Size Bytes Class

coeff 64x2188 1120256 double array 

scales 1x64   512 double array 

wname 1x4 8 char array 
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One-Dimensional Complex Continuous Wavelet Analysis
This section takes you through the features of complex continuous wavelet 
analysis using the Wavelet Toolbox™ software and focuses on the differences 
between the real and complex continuous analysis.

You can refer to the section “One-Dimensional Continuous Wavelet Analysis” 
on page 2-4 if you want to learn how to

• Zoom in on detail

• Display coefficients in normal or absolute mode

• Choose the scales at which the analysis is performed

• Switch from scale to pseudo-frequency information

• Exchange signal and coefficient information between the disk and the 
graphical tools

Wavelet Toolbox software requires only one function for complex continuous 
wavelet analysis of a real valued signal: cwt. You’ll find full information about 
this function in its reference page.

In this section, you’ll learn how to

• Load a signal

• Perform a complex continuous wavelet transform of a signal

• Produce plots of the coefficients

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method. 
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Complex Continuous Analysis Using the Command 
Line
This example involves a cusp signal.

1 Load a signal.

From the MATLAB® prompt, type

load cuspamax; 

You now have the signal cuspamax in your workspace:

whos

caption

caption =
x = linspace(0,1,1024);
y = exp(-128*((x-0.3).^2))-3*(abs(x-0.7).^0.4);

caption is a string that contains the signal definition.

Name Size Bytes Class

caption 1x71 142 char array 

cuspamax 1x1024 8192 double array 
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2 Perform a Continuous Wavelet Transform.

Use the cwt command. Type

c = cwt(cuspamax,1:2:64,'cgau4');

The arguments to cwt specify the signal to be analyzed, the scales of the 
analysis, and the wavelet to be used. The returned argument c contains the 
coefficients at various scales. In this case, c is a complex 32-by-1024 matrix, 
each row of which corresponds to a single scale.

3 Plot the coefficients.

The cwt command accepts a fourth argument. This is a flag that, when 
present, causes cwt to produce four plots related to the complex continuous 
wavelet transform coefficients:

- Real and imaginary parts

- Modulus and angle

The cwt command can accept more arguments to define the different 
characteristics of the produced plots. For more information, see the cwt 
reference page.

Type

c = cwt(cuspamax,1:2:64,'cgau4','plot');
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A plot appears:

Of course, coefficient plots generated from the command line can be 
manipulated using ordinary MATLAB graphics commands. 

Complex Continuous Analysis Using the Graphical 
Interface
We now use the Complex Continuous Wavelet 1-D tool to analyze the same 
cusp signal we examined using the command line interface in the previous 
section.

1 Start the Complex Continuous Wavelet 1-D Tool.

From the MATLAB prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click the Complex Continuous Wavelet 1-D menu item.
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The continuous wavelet analysis tool for one-dimensional signal data 
appears.

2 Load a signal.

Choose the File⇒Load Signal menu option.

When the Load Signal dialog box appears, select the demo MAT-file 
cuspamax.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. 

The cusp signal is loaded into the Complex Continuous Wavelet 1-D tool.

The default value for the sampling period is equal to 1 (second).
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3 Perform a Complex Continuous Wavelet Transform

To start our analysis, let’s perform an analysis using the cgau4 wavelet at 
scales 1 through 64 in steps of 2, just as we did using command line functions 
in “Complex Continuous Analysis Using the Command Line” on page 2-21.

In the upper right portion of the Complex Continuous Wavelet 1-D tool, 
select the cgau4 wavelet and scales 1–64 in steps of 2.

Click the Analyze button.

After a pause for computation, the tool displays the usual plots associated to 
the modulus of the coefficients on the left side, and the angle of the 
coefficients on the right side.

Select cgau4

Select scales from 1 to 64 in steps of 2
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Each side has exactly the same representation that we found in the section 
“Continuous Analysis Using the Graphical Interface” on page 2-8.

Select the plots related to the modulus of the coefficients using the Modulus 
radio button in the Selected Axes frame.
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The figure now looks like the one in the real Continuous Wavelet 1-D tool.

Importing and Exporting Information from the 
Graphical Interface
To know how to import and export information from the Complex Continuous 
Wavelet Graphical Interface, please refer to the corresponding paragraph in 
“One-Dimensional Continuous Wavelet Analysis” on page 2-4.

The only difference is that the variable coefs is a complex matrix (see “Saving 
Wavelet Coefficients” on page 2-18).
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One-Dimensional Discrete Wavelet Analysis
This section takes you through the features of one-dimensional discrete 
wavelet analysis using the Wavelet Toolbox™ software. 

The toolbox provides these functions for one-dimensional signal analysis. For 
more information, see the reference pages.

Analysis-Decomposition Functions

Synthesis-Reconstruction Functions

Decomposition Structure Utilities

Function Name Purpose

dwt Single-level decomposition

wavedec Decomposition

wmaxlev Maximum wavelet decomposition level

Function Name Purpose

idwt Single-level reconstruction

waverec Full reconstruction

wrcoef Selective reconstruction

upcoef Single reconstruction

Function Name Purpose

detcoef Extraction of detail coefficients

appcoef Extraction of approximation coefficients

upwlev Recomposition of decomposition structure



2 Using Wavelets

2-30

De-noising and Compression

In this section, you’ll learn how to

• Load a signal

• Perform a single-level wavelet decomposition of a signal

• Construct approximations and details from the coefficients

• Display the approximation and detail

• Regenerate a signal by inverse wavelet transform

• Perform a multilevel wavelet decomposition of a signal

• Extract approximation and detail coefficients

• Reconstruct the level 3 approximation

• Reconstruct the level 1, 2, and 3 details

• Display the results of a multilevel decomposition

• Reconstruct the original signal from the level 3 decomposition

• Remove noise from a signal

• Refine an analysis

• Compress a signal

• Show a signal’s statistics and histograms

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method.

Function Name Purpose

ddencmp Provide default values for de-noising and compression

wbmpen Penalized threshold for wavelet 1-D or 2-D de-noising

wdcbm Thresholds for wavelet 1-D using Birgé-Massart 
strategy

wdencmp Wavelet de-noising and compression

wden Automatic wavelet de-noising

wthrmngr Threshold settings manager



One-Dimensional Discrete Wavelet Analysis

2-31

The final subsection discusses how to exchange signal and coefficient 
information between the disk and the graphical tools.

One-Dimensional Analysis Using the Command Line
This example involves a real-world signal — electrical consumption measured 
over the course of 3 days. This signal is particularly interesting because of noise 
introduced when a defect developed in the monitoring equipment as the 
measurements were being made. Wavelet analysis effectively removes the 
noise.

1 Load a signal.

From the MATLAB® prompt, type

load leleccum; 

Set the variables. Type

s = leleccum(1:3920); 
l_s = length(s);

2 Perform a single-level wavelet decomposition of a signal.

Perform a single-level decomposition of the signal using the db1 wavelet. 
Type

[cA1,cD1] = dwt(s,'db1');

This generates the coefficients of the level 1 approximation (cA1) and detail 
(cD1).
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3 Construct approximations and details from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the 
coefficients cA1 and cD1, type

A1 = upcoef('a',cA1,'db1',1,l_s); 
D1 = upcoef('d',cD1,'db1',1,l_s);

or

A1 = idwt(cA1,[],'db1',l_s); 
D1 = idwt([],cD1,'db1',l_s);

4 Display the approximation and detail.

To display the results of the level-one decomposition, type

subplot(1,2,1); plot(A1); title('Approximation A1')
subplot(1,2,2); plot(D1); title('Detail D1')

5 Regenerate a signal by using the Inverse Wavelet Transform.

To find the inverse transform, type

A0 = idwt(cA1,cD1,'db1',l_s);
err = max(abs(s-A0))
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err = 
2.2737e-013

6 Perform a multilevel wavelet decomposition of a signal.

To perform a level 3 decomposition of the signal (again using the db1 
wavelet), type

[C,L] = wavedec(s,3,'db1');

The coefficients of all the components of a third-level decomposition (that is, 
the third-level approximation and the first three levels of detail) are 
returned concatenated into one vector, C. Vector L gives the lengths of each 
component.

7 Extract approximation and detail coefficients.

To extract the level 3 approximation coefficients from C, type

cA3 = appcoef(C,L,'db1',3);

To extract the levels 3, 2, and 1 detail coefficients from C, type

cD3 = detcoef(C,L,3); 
cD2 = detcoef(C,L,2); 
cD1 = detcoef(C,L,1);

or

[cD1,cD2,cD3] = detcoef(C,L,[1,2,3]);

S

cA1 cD1

cA2 cD2

cA3 cD3

cD1cD2cA3 cD3

C
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Results are displayed in the figure below, which contains the signal s, the 
approximation coefficients at level 3 (cA3), and the details coefficients from 
level 3 to 1 (cD3, cD2 and cD1) from the top to the bottom.

8 Reconstruct the Level 3 approximation and the Level 1, 2, and 3 details.

To reconstruct the level 3 approximation from C, type

A3 = wrcoef('a',C,L,'db1',3);

To reconstruct the details at levels 1, 2, and 3, from C, type

D1 = wrcoef('d',C,L,'db1',1);
D2 = wrcoef('d',C,L,'db1',2);
D3 = wrcoef('d',C,L,'db1',3);
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9 Display the results of a multilevel decomposition.

To display the results of the level 3 decomposition, type

subplot(2,2,1); plot(A3); 
title('Approximation A3')
subplot(2,2,2); plot(D1); 
title('Detail D1')
subplot(2,2,3); plot(D2); 
title('Detail D2')
subplot(2,2,4); plot(D3); 
title('Detail D3')

10 Reconstruct the original signal from the Level 3 decomposition

To reconstruct the original signal from the wavelet decomposition structure, 
type

A0 = waverec(C,L,'db1');

err = max(abs(s-A0))

err = 
4.5475e-013
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11 Crude de-noising of a signal.

Using wavelets to remove noise from a signal requires identifying which 
component or components contain the noise, and then reconstructing the 
signal without those components. 

In this example, we note that successive approximations become less and 
less noisy as more and more high-frequency information is filtered out of the 
signal. 

The level 3 approximation, A3, is quite clean as a comparison between it and 
the original signal.

To compare the approximation to the original signal, type

subplot(2,1,1);plot(s);title('Original'); axis off
subplot(2,1,2);plot(A3);title('Level 3 Approximation');
axis off
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Of course, in discarding all the high-frequency information, we’ve also lost 
many of the original signal’s sharpest features. 

Optimal de-noising requires a more subtle approach called thresholding. 
This involves discarding only the portion of the details that exceeds a certain 
limit.

12 Remove noise by thresholding.

Let’s look again at the details of our level 3 analysis.

To display the details D1, D2, and D3, type

subplot(3,1,1); plot(D1); title('Detail Level 1'); axis off
subplot(3,1,2); plot(D2); title('Detail Level 2'); axis off
subplot(3,1,3); plot(D3); title('Detail Level 3'); axis off

Original

Level 3 Approximation
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Most of the noise occurs in the latter part of the signal, where the details 
show their greatest activity. What if we limited the strength of the details 
by restricting their maximum values? This would have the effect of cutting 
back the noise while leaving the details unaffected through most of their 
durations. But there’s a better way.

Note that cD1, cD2, and cD3 are just MATLAB vectors, so we could directly 
manipulate each vector, setting each element to some fraction of the vectors’ 
peak or average value. Then we could reconstruct new detail signals D1, D2, 
and D3 from the thresholded coefficients.

To denoise the signal, use the ddencmp command to calculate the default 
parameters and the wdencmp command to perform the actual de-noising, 
type

[thr,sorh,keepapp] = ddencmp('den','wv',s);
clean = wdencmp('gbl',C,L,'db1',3,thr,sorh,keepapp);

Detail Level 1

Detail Level 2

Detail Level 3

Setting a 
threshold
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Note that wdencmp uses the results of the decomposition (C and L) that we 
calculated in Step 6 on page 2-33. We also specify that we used the db1 
wavelet to perform the original analysis, and we specify the global 
thresholding option 'gbl'. See ddencmp and wdencmp in the reference pages 
for more information about the use of these commands.

To display both the original and denoised signals, type

subplot(2,1,1); plot(s(2000:3920)); title('Original')
subplot(2,1,2); plot(clean(2000:3920)); title('De-noised')

We’ve plotted here only the noisy latter part of the signal. Notice how we’ve 
removed the noise without compromising the sharp detail of the original 
signal. This is a strength of wavelet analysis.

While using command line functions to remove the noise from a signal can 
be cumbersome, the software’s graphical interface tools include an 
easy-to-use de-noising feature that includes automatic thresholding. 

200 400 600 800 1000 1200 1400 1600 1800

200

300

400

500

Original

200 400 600 800 1000 1200 1400 1600 1800

200

300

400

500

De−noised



2 Using Wavelets

2-40

More information on the de-noising process can be found in the following 
sections:

- “Remove noise from a signal.” on page 2-49

- “De-Noising” on page 6-99

- “One-Dimensional Variance Adaptive Thresholding of Wavelet 
Coefficients” on page 2-158

- “One-Dimensional Variance Adaptive Thresholding of Wavelet 
Coefficients” on page 6-109

One-Dimensional Analysis Using the Graphical 
Interface
In this section, we explore the same electrical consumption signal as in the 
previous section, but we use the graphical interface tools to analyze the signal.

1 Start the 1-D Wavelet Analysis Tool.

From the MATLAB prompt, type 

wavemenu
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The Wavelet Toolbox Main Menu appears.

2 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.
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3 Load a signal.

From the File menu, choose the Load⇒Signal option.

When the Load Signal dialog box appears, select the demo MAT-file 
leleccum.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.
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The electrical consumption signal is loaded into the Wavelet 1-D tool.

4 Perform a single-level wavelet decomposition.

To start our analysis, let’s perform a single-level decomposition using the 
db1 wavelet, just as we did using the command line functions in 
“One-Dimensional Analysis Using the Command Line” on page 2-31.

In the upper right portion of the Wavelet 1-D tool, select the db1 wavelet and 
single-level decomposition.

Click the Analyze button.

After a pause for computation, the tool displays the decomposition.
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5 Zoom in on relevant detail.

One advantage of using the graphical interface tools is that you can zoom in 
easily on any part of the signal and examine it in greater detail.

Drag a rubber band box (by holding down the left mouse button) over the 
portion of the signal you want to magnify. Here, we’ve selected the noisy part 
of the original signal.
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Click the X+ button (located at the bottom of the screen) to zoom 
horizontally.

The Wavelet 1-D tool zooms all the displayed signals.

The other zoom controls do more or less what you’d expect them to. The 
X- button, for example, zooms out horizontally. The history function keeps 
track of all your views of the signal. Return to a previous zoom level by 
clicking the left arrow button.
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6 Perform a multilevel decomposition.

Again, we’ll use the graphical tools to emulate what we did in the previous 
section using command line functions. To perform a level 3 decomposition of 
the signal using the db1 wavelet:

Simply select 3 from the Level menu at the upper right, and then click the 
Analyze button again.

After the decomposition is performed, you’ll see a new analysis appear in the 
Wavelet 1-D tool.

Select a view
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Selecting Different Views of the Decomposition

The Display mode menu (middle right) lets you choose different views of the 
wavelet decomposition. 

The default display mode is called “Full Decomposition Mode.” Other 
alternatives include

- “Separate Mode,” which shows the details and the approximations in 
separate columns.

- “Superimpose Mode,” which shows the details on a single plot 
superimposed in different colors. The approximations are plotted 
similarly.

- “Tree Mode,” which shows the decomposition tree, the original signal, and 
one additional component of your choice. Click on the decomposition tree 
to select the signal component you’d like to view.

- “Show and Scroll Mode,” which displays three windows. The first shows 
the original signal superimposed on an approximation you select. The 
second window shows a detail you select. The third window shows the 
wavelet coefficients.

- “Show and Scroll Mode (Stem Cfs)” is very similar to the “Show and Scroll 
Mode” except that it displays, in the third window, the wavelet coefficients 
as stem plots instead of colored blocks.
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You can change the default display mode on a per-session basis. Select the 
desired mode from the View ⇒Default Display Mode submenu.

Note  The Compression and De-noising windows opened from the Wavelet 
1-D tool will inherit the current coefficient visualization attribute (stems or 
colored blocks).

Depending on which display mode you select, you may have access to 
additional display options through the More Display Options button (for 
more information see “More Display Options” on page A-19).

Separate Mode Superimpose Mode Tree Mode

Show & Scroll Mode Show & Scroll Mode (Stem Cfs)
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These options include the ability to suppress the display of various 
components, and to choose whether or not to display the original signal 
along with the details and approximations.

7 Remove noise from a signal.

The graphical interface tools feature a de-noising option with a predefined 
thresholding strategy. This makes it very easy to remove noise from a signal.

Bring up the de-noising tool: click the De-noise button, located in the middle 
right of the window, underneath the Analyze button.
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The Wavelet 1-D De-noising window appears.

While a number of options are available for fine-tuning the de-noising 
algorithm, we’ll accept the defaults of soft fixed form thresholding and 
unscaled white noise.

Continue by clicking the De-noise button.

The de-noised signal appears superimposed on the original. The tool also 
plots the wavelet coefficients of both signals.
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Zoom in on the plot of the original and de-noised signals for a closer look.

Drag a rubber band box around the pertinent area, and then click the XY+ 
button.

The De-noise window magnifies your view. By default, the original signal is 
shown in red, and the de-noised signal in yellow.
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Dismiss the Wavelet 1-D De-noising window: click the Close button.

You cannot have the De-noise and Compression windows open 
simultaneously, so close the Wavelet 1-D De-noising window to continue. 
When the Update Synthesized Signal dialog box appears, click No. If you 
click Yes, the Synthesized Signal is then available in the Wavelet 1-D main 
window.

8 Refine the analysis.

The graphical tools make it easy to refine an analysis any time you want to. 
Up to now, we’ve looked at a level 3 analysis using db1. Let’s refine our 
analysis of the electrical consumption signal using the db3 wavelet at level 5.

Select 5 from the Level menu at the upper right, and select the db3 from the 
Wavelet menu. Click the Analyze button.

9 Compress the signal.

The graphical interface tools feature a compression option with automatic or 
manual thresholding. 
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Bring up the Compression window: click the Compress button, located in 
the middle right of the window, underneath the Analyze button.

The Compression window appears.

While you always have the option of choosing by level thresholding, here 
we’ll take advantage of the global thresholding feature for quick and easy 
compression.

Thresholding method menus

Threshold slider

Compress button
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Note  If you want to experiment with manual thresholding, choose the By 
Level thresholding option from the menu located at the top right of the 
Wavelet 1-D Compression window. The sliders located below this menu then 
control the level-dependent thresholds, indicated by yellow dotted lines 
running horizontally through the graphs on the left of the window. The yellow 
dotted lines can also be dragged directly using the left mouse button.

Click the Compress button, located at the center right.

After a pause for computation, the electrical consumption signal is 
redisplayed in red with the compressed version superimposed in yellow. 
Below, we’ve zoomed in to get a closer look at the noisy part of the signal.

You can see that the compression process removed most of the noise, but 
preserved 99.74% of the energy of the signal. The automatic thresholding 
was very efficient, zeroing out all but 3.2% of the wavelet coefficients.

10 Show the residuals.

From the Wavelet 1-D Compression tool, click the Residuals button. The 
More on Residuals for Wavelet 1-D Compression window appears.
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Displayed statistics include measures of tendency (mean, mode, median) 
and dispersion (range, standard deviation). In addition, the tool provides 
frequency-distribution diagrams (histograms and cumulative histograms), 
as well as time-series diagrams: autocorrelation function and spectrum. The 
same feature exists for the Wavelet 1-D De-noising tool.

Dismiss the Wavelet 1-D Compression window: click the Close button. 
When the Update Synthesized Signal dialog box appears, click No.

11 Show statistics.

You can view a variety of statistics about your signal and its components. 

From the Wavelet 1-D tool, click the Statistics button.
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The Wavelet 1-D Statistics window appears displaying by default statistics 
on the original signal.

Select the synthesized signal or signal component whose statistics you want 
to examine. Click on the appropriate radio button, and then press the Show 
Statistics button. Here, we’ve chosen to examine the compressed signal 
using more 100 bins instead of 30, which is the default:
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Displayed statistics include measures of tendency (mean, mode, median) 
and dispersion (range, standard deviation). 

In addition, the tool provides frequency-distribution diagrams (histograms 
and cumulative histograms). You can plot these histograms separately using 
the Histograms button from the Wavelets 1-D window.

Select the Approximation radio button. A menu appears from which you 
choose the level of the approximation you want to examine.

Select Level 1 and again click the Show Statistics button. Statistics appear 
for the level 1 approximation.
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Importing and Exporting Information from the 
Graphical Interface
The Wavelet 1-D graphical interface tool lets you import information from and 
export information to disk. 

Saving Information to Disk
You can save synthesized signals, coefficients, and decompositions from the 
Wavelet 1-D tool to the disk, where the information can be manipulated and 
later reimported into the graphical tool.



One-Dimensional Discrete Wavelet Analysis

2-59

Saving Synthesized Signals. You can process a signal in the Wavelet 1-D tool and 
then save the processed signal to a MAT-file (with extension mat or other).

For example, load the example analysis: File⇒Example Analysis⇒Basic 
Signals⇒with db3 at level 5 −−> Sum of sines, and perform a compression or 
de-noising operation on the original signal. When you close the De-noising or 
Compression window, update the synthesized signal by clicking Yes in the 
dialog box.

Then, from the Wavelet 1-D tool, select the File⇒Save⇒Synthesized Signal 
menu option.

A dialog box appears allowing you to select a directory and filename for the 
MAT-file. For this example, choose the name synthsig.

To load the signal into your workspace, simply type

load synthsig

Save information to disk
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When the synthesized signal is obtained using any thresholding method except 
a global one, the saved structure is

whos

The synthesized signal is given by the variable synthsig. In addition, the 
parameters of the de-noising or compression process are given by the wavelet 
name (wname) and the level dependent thresholds contained in the thrParams 
variable, which is a cell array of length 5 (same as the level of the 
decomposition). 

For i from 1 to 5, thrParams{i} contains the lower and upper bounds of the 
thresholding interval and the threshold value (since interval dependent 
thresholds are allowed, see the section “One-Dimensional Variance Adaptive 
Thresholding of Wavelet Coefficients” on page 2-158). 

For example, for level 1,

thrParams{1}

ans =
1.0e+03 *
0.0010    1.0000    0.0014

When the synthesized signal is obtained using a global thresholding method, 
the saved structure is

Name Size Bytes Class

synthsig 1x1000 8000 double array 

thrParams 1x5 580 cell array 

wname 1x3 6 char array 

Name Size Bytes Class

synthsig 1x1000 8000 double array 

valTHR 1x1 8 double array 

wname 1x3 6 char array
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where the variable valTHR contains the global threshold:

valTHR

valTHR =
1.2922

Saving Discrete Wavelet Transform Coefficients. The Wavelet 1-D tool lets you save 
the coefficients of a discrete wavelet transform (DWT) to disk. The toolbox 
creates a MAT-file in the current directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option 
File⇒Save⇒Coefficients.

A dialog box appears that lets you specify a directory and filename for storing 
the coefficients.

Consider the example analysis:

File⇒Example Analysis⇒Basic Signals⇒with db1 at level 5 −−> Cantor 
curve.

After saving the wavelet coefficients to the file cantor.mat, load the variables 
into your workspace:

load cantor
whos 

Variable coefs contains the discrete wavelet coefficients. More precisely, in the 
above example coefs is a 1-by-2190 vector of concatenated coefficients, and 
longs is a vector giving the lengths of each component of coefs.

Variable wname contains the wavelet name and thrParams is empty since the 
synthesized signal does not exist. 

Name Size Bytes Class

coefs 1x2190 17520 double array 

longs 1x7 56 double array 

thrParams 0x0 0 double array 

wname 1x3 6 char array 
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Saving Decompositions. The Wavelet 1-D tool lets you save the entire set of data 
from a discrete wavelet analysis to disk. The toolbox creates a MAT-file in the 
current directory with a name you choose, followed by the extension wa1 
(wavelet analysis 1-D).

Open the Wavelet 1-D tool and load the example analysis:

File⇒Example Analysis⇒Basic Signals⇒with db3 at level 5 −−> Sum of 
sines

To save the data from this analysis, use the menu option 
File⇒Save⇒Decomposition.

A dialog box appears that lets you specify a directory and filename for storing 
the decomposition data. Type the name wdecex1d.

After saving the decomposition data to the file wdecex1d.wa1, load the 
variables into your workspace:

load wdecex1d.wa1 -mat
whos 

Note  Save options are also available when performing de-noising or 
compression inside the Wavelet 1-D tool. In the Wavelet 1-D De-noising 
window, you can save de-noised signal and decomposition. The same holds 
true for the Wavelet 1-D Compression window. This way, you can save many 
different trials from inside the De-noising and Compression windows without 
going back to the main Wavelet 1-D window during a fine-tuning process.

Name Size Bytes Class

coefs 1x1023 8184 double array 

data_name 1x6 12 char array 

longs 1x7 56 double array

thrParams 0x0 0 double array

wave_name 1x3 6 char array 
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Note  When saving a synthesized signal, a decomposition or coefficients to a 
MAT-file, the extension of this file is free. The mat extension is not necessary.

Loading Information into the Wavelet 1-D Tool
You can load signals, coefficients, or decompositions into the graphical 
interface. The information you load may have been previously exported from 
the graphical interface, and then manipulated in the workspace, or it may have 
been information you generated initially from the command line. 

In either case, you must observe the strict file formats and data structures used 
by the Wavelet 1-D tool, or else errors will result when you try to load 
information.

Loading Signals. To load a signal you’ve constructed in your MATLAB workspace 
into the Wavelet 1-D tool, save the signal in a MAT-file (with extension mat or 
other). 

For instance, suppose you’ve designed a signal called warma and want to 
analyze it in the Wavelet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)  

sizwarma =
           1        1000

Load information from disk
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To load this signal into the Wavelet 1-D tool, use the menu option 
File⇒Load⇒Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note  The first one-dimensional variable encountered in the file is considered 
the signal. Variables are inspected in alphabetical order.

Loading Discrete Wavelet Transform Coefficients. To load discrete wavelet transform 
coefficients into the Wavelet 1-D tool, you must first save the appropriate data 
in a MAT-file, which must contain at least the two variables coefs and longs.

Variable coefs must be a vector of DWT coefficients (concatenated for the 
various levels), and variable longs a vector specifying the length of each 
component of coefs, as well as the length of the original signal.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs

Use the File⇒Load⇒Coefficients menu option from the Wavelet 1-D tool to 
load the data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which 
your data reside. 

Loading Decompositions. To load discrete wavelet transform decomposition data 
into the Wavelet 1-D graphical interface, you must first save the appropriate 
data in a MAT-file (with extension wa1 or other).

S

cA1 cD1

cA2 cD2

cA3 cD3

cD1cD2cA3 cD3

coefs

longs

Decomposition

1000

501

252

127 127

501 1000127 127 252
501

252
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The MAT-file contains the following variables.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs longs wave_name

Use the File⇒Load⇒Decomposition menu option from the Wavelet 1-D tool 
to load the decomposition data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which 
your data reside.

Note  When loading a signal, a decomposition or coefficients from a MAT-file, 
the extension of this file is free. The mat extension is not necessary.

Variable Status Description

coefs Required Vector of concatenated DWT coefficients

longs Required Vector specifying lengths of components of 
coefs and of the original signal

wave_name Required String specifying name of wavelet used for 
decomposition (e.g., db3)

data_name Optional String specifying name of decomposition
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Two-Dimensional Discrete Wavelet Analysis
This section takes you through the features of two-dimensional discrete 
wavelet analysis using the Wavelet Toolbox™ software. The toolbox provides 
these functions for image analysis. For more information, see the function 
reference pages.

Note  In this section the presentation and examples use two-dimensional 
arrays corresponding to indexed image representations. However, the 
functions described are also available when using truecolor images, which are 
represented by m-by-n-by-3 arrays of uint8. For more information on image 
formats, see “Wavelets: Working with Images” on page 2-97.
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Analysis-Decomposition Functions

Synthesis-Reconstruction Functions

Decomposition Structure Utilities 

Function Name Purpose

dwt2 Single-level decomposition

wavedec2 Decomposition

wmaxlev Maximum wavelet decomposition level

Function Name Purpose

idwt2 Single-level reconstruction

waverec2 Full reconstruction

wrcoef2 Selective reconstruction

upcoef2 Single reconstruction

Function Name Purpose

detcoef2 Extraction of detail coefficients

appcoef2 Extraction of approximation coefficients

upwlev2 Recomposition of decomposition structure
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De-noising and Compression

In this section, you’ll learn

• How to load an image

• How to analyze an image

• How to perform single-level and multilevel image decompositions and 
reconstructions (command line only)

• How to use Square and Tree mode features (GUI only)

• How to zoom in on detail (GUI only)

• How to compress an image

Function Name Purpose

ddencmp Provide default values for de-noising and 
compression

wbmpen Penalized threshold for wavelet 1-D or 2-D 
de-noising

wdcbm2 Thresholds for wavelet 2-D using Birgé-Massart 
strategy

wdencmp Wavelet de-noising and compression

wthrmngr Threshold settings manager
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Two-Dimensional Analysis Using the Command Line
In this example we’ll show how you can use two-dimensional wavelet analysis 
to compress an image efficiently without sacrificing its clarity.

Note  Instead of directly using image(I) to visualize the image I, we use 
image(wcodemat(I)), which displays a rescaled version of I leading to a 
clearer presentation of the details and approximations (see wcodemat 
reference page).

1 Load an image.

From the MATLAB® prompt, type

load wbarb; 
whos

2 Display the image. Type

image(X); colormap(map); colorbar;

Name Size Bytes Class

X 256x256 524288 double array 

map 192x3 4608 double array 
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3 Convert an indexed image to a grayscale image.

If the colormap is smooth, the wavelet transform can be directly applied to 
the indexed image; otherwise the indexed image should be converted to 
grayscale format. For more information, see “Wavelets: Working with 
Images” on page 2-97.

Since the colormap is smooth in this image, you can now perform the 
decomposition. 

4 Perform a single-level wavelet decomposition.

To perform a single-level decomposition of the image using the bior3.7 
wavelet, type

[cA1,cH1,cV1,cD1] = dwt2(X,'bior3.7');

This generates the coefficient matrices of the level-one approximation (cA1) 
and horizontal, vertical and diagonal details (cH1,cV1,cD1, respectively).

5 Construct and display approximations and details from the coefficients.

To construct the level-one approximation and details (A1, H1, V1, and D1) from 
the coefficients cA1, cH1, cV1, and cD1, type

A1 = upcoef2('a',cA1,'bior3.7',1); 
H1 = upcoef2('h',cH1,'bior3.7',1);
V1 = upcoef2('v',cV1,'bior3.7',1);
D1 = upcoef2('d',cD1,'bior3.7',1);

or

sx = size(X);
A1 = idwt2(cA1,[],[],[],'bior3.7',sx); 
H1 = idwt2([],cH1,[],[],'bior3.7',sx); 
V1 = idwt2([],[],cV1,[],'bior3.7',sx); 
D1 = idwt2([],[],[],cD1,'bior3.7',sx); 

To display the results of the level 1 decomposition, type

colormap(map);
subplot(2,2,1); image(wcodemat(A1,192));
title('Approximation A1')
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subplot(2,2,2); image(wcodemat(H1,192));
title('Horizontal Detail H1')
subplot(2,2,3); image(wcodemat(V1,192));
title('Vertical Detail V1')
subplot(2,2,4); image(wcodemat(D1,192));
title('Diagonal Detail D1')

6 Regenerate an image by single-level Inverse Wavelet Transform.

To find the inverse transform, type

Xsyn = idwt2(cA1,cH1,cV1,cD1,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients of 
the level 1 approximation and details.

7 Perform a multilevel wavelet decomposition.

To perform a level 2 decomposition of the image (again using the bior3.7 
wavelet), type
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[C,S] = wavedec2(X,2,'bior3.7');

where X is the original image matrix, and 2 is the level of decomposition. 

The coefficients of all the components of a second-level decomposition (that 
is, the second-level approximation and the first two levels of detail) are 
returned concatenated into one vector, C. Argument S is a bookkeeping 
matrix that keeps track of the sizes of each component.

8 Extract approximation and detail coefficients.

To extract the level 2 approximation coefficients from C, type

cA2 = appcoef2(C,S,'bior3.7',2);

To extract the first- and second-level detail coefficients from C, type

cH2 = detcoef2('h',C,S,2);
cV2 = detcoef2('v',C,S,2); 
cD2 = detcoef2('d',C,S,2); 
cH1 = detcoef2('h',C,S,1);
cV1 = detcoef2('v',C,S,1); 
cD1 = detcoef2('d',C,S,1);

or

[cH2,cV2,cD2] = detcoef2('all',C,S,2); 
[cH1,cV1,cD1] = detcoef2('all',C,S,1); 

where the first argument ('h', 'v', or 'd') determines the type of detail 
(horizontal, vertical, diagonal) extracted, and the last argument determines 
the level.

9 Reconstruct the Level 2 approximation and the Level 1 and 2 details.

To reconstruct the level 2 approximation from C, type

A2 = wrcoef2('a',C,S,'bior3.7',2);

To reconstruct the level 1 and 2 details from C, type

H1 = wrcoef2('h',C,S,'bior3.7',1); 
V1 = wrcoef2('v',C,S,'bior3.7',1); 
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D1 = wrcoef2('d',C,S,'bior3.7',1); 
H2 = wrcoef2('h',C,S,'bior3.7',2);
V2 = wrcoef2('v',C,S,'bior3.7',2); 
D2 = wrcoef2('d',C,S,'bior3.7',2);

10 Display the results of a multilevel decomposition.

Note  With all the details involved in a multilevel image decomposition, it 
makes sense to import the decomposition into the Wavelet 2-D graphical tool 
in order to more easily display it. For information on how to do this, see 
“Loading Decompositions” on page 2-95.

To display the results of the level 2 decomposition, type

colormap(map);
subplot(2,4,1);image(wcodemat(A1,192));
title('Approximation A1')
subplot(2,4,2);image(wcodemat(H1,192));
title('Horizontal Detail H1')
subplot(2,4,3);image(wcodemat(V1,192));
title('Vertical Detail V1')
subplot(2,4,4);image(wcodemat(D1,192));
title('Diagonal Detail D1')
subplot(2,4,5);image(wcodemat(A2,192));
title('Approximation A2')
subplot(2,4,6);image(wcodemat(H2,192));
title('Horizontal Detail H2')
subplot(2,4,7);image(wcodemat(V2,192));
title('Vertical Detail V2')
subplot(2,4,8);image(wcodemat(D2,192));
title('Diagonal Detail D2')
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11 Reconstruct the original image from the multilevel decomposition.

To reconstruct the original image from the wavelet decomposition structure, 
type

X0 = waverec2(C,S,'bior3.7');

This reconstructs or synthesizes the original image from the coefficients C of 
the multilevel decomposition.

12 Compress the image and display it.

To compress the original image X, use the ddencmp command to calculate the 
default parameters and the wdencmp command to perform the actual 
compression. Type

[thr,sorh,keepapp] = ddencmp('cmp','wv',X);
[Xcomp,CXC,LXC,PERF0,PERFL2] = 
wdencmp('gbl',C,S,'bior3.7',2,thr,sorh,keepapp);

Note that we pass in to wdencmp the results of the decomposition (C and S) 
we calculated in Step 7 on page 2-71. We also specify the bior3.7 wavelets, 
because we used this wavelet to perform the original analysis. Finally, we 



Two-Dimensional Discrete Wavelet Analysis

2-75

specify the global thresholding option 'gbl'. See ddencmp and wdencmp 
reference pages for more information about the use of these commands.

To view the compressed image side by side with the original, type

colormap(map);
subplot(121); image(X); title('Original Image');
axis square
subplot(122); image(Xcomp); title('Compressed Image');
axis square

PERF0
PERF0 =

49.8076

PERFL2
PERFL2 =

99.9817

These returned values tell, respectively, what percentage of the wavelet 
coefficients was set to zero and what percentage of the image’s energy was 
preserved in the compression process.

Note that, even though the compressed image is constructed from only about 
half as many nonzero wavelet coefficients as the original, there is almost no 
detectable deterioration in the image quality.



2 Using Wavelets

2-76

Two-Dimensional Analysis Using the Graphical 
Interface
In this section we explore the same image as in the previous section, but we use 
the graphical interface tools to analyze the image.

1 Start the 2-D Wavelet Analysis Tool.

From the MATLAB prompt, type

wavemenu
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The Wavelet Tool Main Menu appears
.

Click the Wavelet 2-D menu item. The discrete wavelet analysis tool for 
two-dimensional image data appears.
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2 Load an image.

From the File menu, choose the Load⇒Image option.

When the Load Image dialog box appears, select the demo MAT-file 
wbarb.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.
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The image is loaded into the Wavelet 2-D tool.

3 Analyze the image.

Using the Wavelet and Level menus located to the upper right, determine 
the wavelet family, the wavelet type, and the number of levels to be used for 
the analysis.

For this analysis, select the bior3.7 wavelet at level 2.

Click the Analyze button. After a pause for computation, the Wavelet 2-D 
tool displays its analysis.
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Visualization

Decomposition

Original image

Synthesized image
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Using Square Mode Features. By default, the analysis appears in “Square Mode.” 
This mode includes four different displays. In the upper left is the original 
image. Below that is the image reconstructed from the various 
approximations and details. To the lower right is a decomposition showing 
the coarsest approximation coefficients and all the horizontal, diagonal, and 
vertical detail coefficients. Finally, the visualization space at the top right 
displays any component of the analysis that you want to look at more closely.

Click on any decomposition component in the lower right window.

A green border highlights the selected component. At the lower right of the 
Wavelet 2-D window, there is a set of three buttons labeled “Operations on 
selected image.” Note that if you click again on the same component, you’ll 
deselect it and the green border disappear.

Click the Visualize button.

The selected image is displayed in the visualization area. You are seeing the 
raw, unreconstructed two-dimensional wavelet coefficients. Using the other 
buttons, you can display the reconstructed version of the selected image 
component, or you can view the selected component at full screen resolution.
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Using Tree Mode Features. Choose Tree from the View Mode menu.

Your display changes to reveal the following.

Approximation coefficients cA2 Reconstructed Approximation A2
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This is the same information shown in square mode, with in addition all the 
approximation coefficients, but arranged to emphasize the tree structure of 
the decomposition. The various buttons and menus work just the same as 
they do in square mode.

Zooming in on Detail. Drag a rubber band box (by holding down the left mouse 
button) over the portion of the image you want to magnify.

Click the XY+ button (located at the bottom of the screen) to zoom 
horizontally and vertically.
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The Wavelet 2-D tool enlarges the displayed images.

To zoom back to original magnification, click the History <<− button.

4 Compress the image

Click the Compress button, located to the upper right of the Wavelet 2-D 
window. The Wavelet 2-D Compression window appears.
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The tool automatically selects thresholding levels to provide a good initial 
balance between retaining the image’s energy while minimizing the number 
of coefficients needed to represent the image. 

However, you can also adjust thresholds manually using the By Level 
thresholding option, and then the sliders or edits corresponding to each 
level. 

For this example, select the By Level thresholding option and select the 
Remove near 0 method from the Select thresholding method menu.

The following window is displayed.

Threshold menus

Compress button
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Select from the direction menu whether you want to adjust thresholds for 
horizontal, diagonal or vertical details. To make the actual adjustments for 
each level, use the sliders or use the left mouse button to directly drag the 
yellow vertical lines.

To compress the original image, click the Compress button. After a pause 
for computation, the compressed image is displayed beside the original. 
Notice that compression eliminates almost half the coefficients, yet no 
detectable deterioration of the image appears.

Threshold menus

Direction menu

Compress button
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5 Show the residuals.

From the Wavelet 2-D Compression tool, click the Residuals button. The 
More on Residuals for Wavelet 2-D Compression window appears.

Displayed statistics include measures of tendency (mean, mode, median) 
and dispersion (range, standard deviation). In addition, the tool provides 
frequency-distribution diagrams (histograms and cumulative histograms). 
The same tool exists for the Wavelet 2-D De-noising tool.

Note  The statistics displayed in the above figure are related to the displayed 
image but not to the original one. Usually this information is the same, but in 
some cases, edge effects may cause the original image to be cropped slightly. 
To see the exact statistics, use the command line functions to get the desired 
image and then apply the desired MATLAB statistical function(s). 



2 Using Wavelets

2-88

Importing and Exporting Information from the 
Graphical Interface
The Wavelet 2-D graphical tool lets you import information from and export 
information to disk, if you adhere to the proper file formats.

Saving Information to Disk
You can save synthesized images, coefficients, and decompositions from the 
Wavelet 2-D tool to disk, where the information can be manipulated and later 
reimported into the graphical tool.

Saving Synthesized Images. You can process an image in the Wavelet 2-D tool, and 
then save the processed image to a MAT-file (with extension mat or other). 

For example, load the example analysis:

File⇒Example Analysis⇒at level 3, with sym4 −−> detail Durer

and perform a compression on the original image. When you close the Wavelet 
2-D Compression window, update the synthesized image by clicking Yes in the 
dialog box that appears.

Then, from the Wavelet 2-D tool, select the File⇒Save⇒Synthesized Image 
menu option. A dialog box appears allowing you to select a directory and 
filename for the MAT-file (with extension mat or other). For this example, 
choose the name symage.

To load the image into your workspace, type

load symage
whos

Save information to disk
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The synthesized image is given by X and map contains the colormap. In 
addition, the parameters of the de-noising or compression process are given by 
the wavelet name (wname) and the global threshold (valTHR).

Saving Discrete Wavelet Transform Coefficients. The Wavelet 2-D tool lets you save 
the coefficients of a discrete wavelet transform (DWT) to disk. The toolbox 
creates a MAT-file in the current directory with a name you choose.

To save the DWT coefficients from the present analysis, use the menu option 
File⇒Save⇒Coefficients.

A dialog box appears that lets you specify a directory and filename for storing 
the coefficients.

Consider the example analysis:

File⇒Example Analysis⇒at level 3, with sym4 −−> Detail Durer

After saving the discrete wavelet coefficients to the file cfsdurer.mat, load the 
variables into your workspace:

load cfsdurer
whos

Name Size Bytes Class

X 359x371 1065512 double array 

map 64x3 1536 double array 

valTHR 1x1 8 double array 

wname 1x4 8 char array 

Name Size Bytes Class

coefs 1x142299 1138392 double array 

map 64x3 1536 double array 

sizes 5x2 80 double array 
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Variable map contains the colormap. Variable wname contains the wavelet name 
and valTHR is empty since the synthesized image is the same as the original 
one.

Variables coefs and sizes contain the discrete wavelet coefficients and the 
associated matrix sizes. More precisely, in the above example, coefs is a 
1-by-142299 vector of concatenated coefficients, and sizes gives the length of 
each component.

Saving Decompositions. The Wavelet 2-D tool lets you save the entire set of data 
from a discrete wavelet analysis to disk. The toolbox creates a MAT-file in the 
current directory with a name you choose, followed by the extension wa2 
(wavelet analysis 2-D).

Open the Wavelet 2-D tool and load the example analysis:

File⇒Example Analysis⇒at level 3, with sym4 −−> Detail Durer.

To save the data from this analysis, use the menu option 
File⇒Save⇒Decomposition.

A dialog box appears that lets you specify a directory and filename for storing 
the decomposition data. Type the name decdurer.

After saving the decomposition data to the file decdurer.wa2, load the 
variables into your workspace:

load decdurer.wa2 -mat
whos 

valTHR 0x0 0 double array 

wname 1x4 8 char array 

Name Size Bytes Class

coefs 1x142299 1138392 double array 

data_name 1x6 12 char array    

map 64x3 1536 double array

Name Size Bytes Class
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Variables coefs and sizes contain the wavelet decomposition structure. Other 
variables contain the wavelet name, the colormap, and the filename containing 
the data. Variable valTHR is empty since the synthesized image is the same as 
the original one.

Note  Save options are also available when performing de-noising or 
compression inside the Wavelet 2-D tool. In the Wavelet 2-D De-noising 
window, you can save de-noised image and decomposition. The same holds 
true for the Wavelet 2-D Compression window. This way, you can save many 
different trials from inside the De-noising and Compression windows without 
going back to the main Wavelet 2-D window during a fine-tuning process.

Note  When saving a synthesized image, a decomposition, or coefficients to a 
MAT-file, the extension of this file is free. The mat extension is not necessary.

Loading Information into the Wavelet 2-D Tool
You can load images, coefficients, or decompositions into the graphical 
interface. The information you load may have been previously exported from 
the graphical interface, and then manipulated in the workspace; or it may have 
been information you generated initially from the command line. 

In either case, you must observe the strict file formats and data structures used 
by the Wavelet 2-D tool, or else errors will result when you try to load 
information.

sizes 5x2 80 double array 

valTHR 0x0 0 double array

wave_name 1x4 8 char array

Name Size Bytes Class
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Loading Images. This toolbox supports only indexed images. An indexed image is 
a matrix containing only integers from 1 to n, where n is the number of colors 
in the image. 

This image may optionally be accompanied by an n-by-3 matrix called map. This 
is the colormap associated with the image. When MATLAB displays such an 
image, it uses the values of the matrix to look up the desired color in this 
colormap. If the colormap is not given, the Wavelet 2-D tool uses a monotonic 
colormap with max(max(X)) min(min(X))+1 colors.

To load an image you’ve constructed in your MATLAB workspace into the 
Wavelet 2-D tool, save the image (and optionally, the variable map) in a 
MAT-file (with extension mat or other). 

For instance, suppose you’ve created an image called brain and want to 
analyze it in the Wavelet 2-D tool. Type

X = brain;
map = pink(256);
save myfile X map

To load this image into the Wavelet 2-D tool, use the menu option 
File⇒Load⇒Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Load information from disk
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Note  The graphical tools allow you to load an image that does not contain 
integers from 1 to n. The computations are correct because they act directly on 
the matrix, but the display of the image is strange. The values less than 1 are 
evaluated as 1, the values greater than n are evaluated as n, and a real value 
within the interval [1,n] is evaluated as the closest integer.

The coefficients, approximations, and details produced by wavelet 
decomposition are not indexed image matrices. 

To display these images in a suitable way, the Wavelet 2-D tool follows these 
rules:

• Reconstructed approximations are displayed using the colormap map.

• The coefficients and the reconstructed details are displayed using the 
colormap map applied to a rescaled version of the matrices.

Note  The first two-dimensional variable encountered in the file (except the 
variable map, which is reserved for the colormap) is considered the image. 
Variables are inspected in alphabetical order.

Loading Discrete Wavelet Transform Coefficients. To load discrete wavelet transform 
(DWT) coefficients into the Wavelet 2-D tool, first save the appropriate data in 
a MAT-file, which must contain at least the two variables: 

• coefs, the coefficients vector 

• sizes, the bookkeeping matrix 
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For an indexed image the matrix sizes is a (n+2-by-2) array:

For a truecolor image, the matrix sizes is a (n+2-by-3):

cAn

coefs (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

..
.

32 32

256 256

sizes (n+2-by-2)

512 512  X

cAn

coefs (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

.
..

sizes (n+2-by-3)

 X

3

32 32 3

256 256 3

512 512 3
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Variable coefs must be a vector of concatenated DWT coefficients. The coefs 
vector for an n-level decomposition contains 3n+1 sections, consisting of the 
level-n approximation coefficients, followed by the horizontal, vertical, and 
diagonal detail coefficients, in that order, for each level. Variable sizes is a 
matrix, the rows of which specify the size of cAn, the size of cHn (or cVn, or 
cDn),..., the size of cH1 (or cV1, or cD1), and the size of the original image X. The 
sizes of vertical and diagonal details are the same as the horizontal detail.

After constructing or editing the appropriate data in your workspace, type

save myfile coefs sizes

Use the File⇒Load Coefficients menu option from the Wavelet 2-D tool to 
load the data into the graphical tool.

A dialog box appears, allowing you to choose the directory and file in which 
your data reside. 

Loading Decompositions. To load discrete wavelet transform decomposition data 
into the Wavelet 2-D tool, you must first save the appropriate data in a 
MAT-file (with extension wa2 or other). 

The MAT-file contains the variables

After constructing or editing the appropriate data in your workspace, type

save myfile.wa2 coefs sizes wave_name

Variable Status Description

coefs Required Vector of concatenated DWT coefficients

sizes Required Matrix specifying sizes of components of 
coefs and of the original image

wave_name Required String specifying name of wavelet used for 
decomposition (e.g., db3)

map Optional n-by-3 colormap matrix.

data_name Optional String specifying name of decomposition
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Use the File⇒Load⇒Decomposition menu option from the Wavelet 2-D tool 
to load the image decomposition data.

A dialog box appears, allowing you to choose the directory and file in which 
your data reside. 

Note  When loading an image, a decomposition, or coefficients from a 
MAT-file, the extension of this file is free. The mat extension is not necessary.
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Wavelets: Working with Images
This section provides additional information about working with images in the 
Wavelet Toolbox™ software. It describes the types of supported images and 
how the MATLAB® environment represents them, as well as techniques for 
analyzing color images.

Understanding Images in the MATLAB® Environment
The basic data structure in MATLAB is the rectangular matrix, an ordered set 
of real or complex elements. This object is naturally suited to the 
representation of images, which are real-valued, ordered sets of color or 
intensity data. (This toolbox does not support complex-valued images.)

The word pixel is derived from picture element and usually denotes a single dot 
on a computer display, or a single element in an image matrix. You can select 
a single pixel from an image matrix using normal matrix subscripting. For 
example,

I(2,15)

returns the value of the pixel at row 2 and column 15 of the image I. By default, 
MATLAB scales images to fill the display axes; therefore, an image pixel may 
use more than a single pixel on the screen. 

Indexed Images
A typical color image requires two matrices: a colormap and an image matrix. 
The colormap is an ordered set of values that represent the colors in the image. 
For each image pixel, the image matrix contains a corresponding index into the 
colormap. (The elements of the image matrix are floating-point integers, or 
flints, which MATLAB stores as double-precision values.) 

The size of the colormap matrix is n-by-3 for an image containing n colors. Each 
row of the colormap matrix is a 1-by-3 red, green, blue (RGB) color vector

color = [R G B]

that specifies the intensity of the red, green, and blue components of that color. 
R, G, and B are real scalars that range from 0.0 (black) to 1.0 (full intensity). 
MATLAB translates these values into display intensities when you display an 
image and its colormap.
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When MATLAB displays an indexed image, it uses the values in the image 
matrix to look up the desired color in the colormap. For instance, if the image 
matrix contains the value 18 in matrix location (86,198), the color for pixel 
(86,198) is the color from row 18 of the colormap.

Outside MATLAB, indexed images with n colors often contain values from 0 to 
n–1. These values are indices into a colormap with 0 as its first index. Since 
MATLAB matrices start with index 1, you must increment each value in the 
image, or shift up the image, to create an image that you can manipulate with 
toolbox functions.

Wavelet Decomposition of Indexed Images
Indexed images can be thought of as scaled intensity images, with matrix 
elements containing only integers from 1 to n, where n is the number of discrete 
shades in the image. 
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If the colormap is not provided, the graphical user interface tools display the 
image and processing results using a monotonic colormap with 
max(max(X))-min(min(X))+1 colors. 

Since the image colormap is only used for display purposes, some indexed 
images may need to be preprocessed to achieve the correct results from the 
wavelet decomposition.

In general, color indexed images do not have linear, monotonic colormaps and 
need to be converted to the appropriate gray-scale indexed image before 
performing a wavelet decomposition.

How Decompositions Are Displayed
Note that the coefficients, approximations, and details produced by wavelet 
decomposition are not indexed image matrices. 

To display these images in a suitable way, the graphical user interface tools 
follow these rules:

• Reconstructed approximations are displayed using the colormap map.

• The coefficients and the reconstructed details are displayed using the 
colormap map applied to a rescaled version of the matrices. 

RGB (Truecolor) Images
An RGB image, sometimes referred to as a truecolor image, is stored in 
MATLAB as an m-by-n-by-3 data array that defines red, green, and blue color 
components for each individual pixel. RGB images do not use a palette. The 
color of each pixel is determined by the combination of the red, green, and blue 
intensities stored in each color plane at the pixel’s location. Graphics file 
formats store RGB images as 24-bit images, where the red, green, and blue 
components are 8 bits each. This yields a potential of 16 million colors.

The precision with which a real-life image can be replicated led to the 
nickname “truecolor image.” An RGB MATLAB array can be of class double, 
single, uint8, or uint16. In an RGB array of class double, each color 
component is a value between 0 and 1.

The color components of an 8-bit RGB image are integers in the range [0, 255] 
rather than floating-point values in the range [0, 1].
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Wavelet Decomposition of Truecolor Images
The truecolor images analyzed are m-by-n-by-3 arrays of uint8. Each of the 
three-color components is a matrix that is decomposed using the 
two-dimensional wavelet decomposition scheme.

Other Images 
Wavelet Toolbox software lets you work with some other types of images. Using 
the imread function, the various tools using images try to load indexed images 
from files that are not MAT files (for example, PCX files).

These tools are:

• Two-Dimensional Discrete Wavelet Analysis

• Two-Dimensional Wavelet Packet Analysis

• Two-Dimensional Stationary Wavelet Analysis

• Two-Dimensional Extension tool

For more information on the supported file types, type help imread.

Use the imfinfo function to find the type of image stored in the file. If the file 
does not contain an indexed image, the load operation fails.

Image Conversion
Image Processing Toolbox™ software provides a comprehensive set of 
functions that let you easily convert between image types. If you do not have 
Image Processing Toolbox software, the examples below demonstrate how this 
conversion may be performed using basic MATLAB commands.

Example 1 Converting Color Indexed Images
load xpmndrll
whos 

Name Size Bytes Class

X2 192x200 307200 double array 

map 64x3 1536 double array 
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image(X2)
title('Original Color Indexed Image')
colormap(map); colorbar

The color bar to the right of the image is not smooth and does not monotonically 
progress from dark to light. This type of indexed image is not suitable for direct 
wavelet decomposition with the toolbox and needs to be preprocessed.

First, separate the color indexed image into its RGB components:

R = map(X2,1); R = reshape(R,size(X2));
G = map(X2,2); G = reshape(G,size(X2));
B = map(X2,3); B = reshape(B,size(X2));

Next, convert the RGB matrices into a gray-scale intensity image, using the 
standard perceptual weightings for the three-color components:

Xrgb = 0.2990*R + 0.5870*G + 0.1140*B;

Then, convert the gray-scale intensity image back to a gray-scale indexed 
image with 64 distinct levels and create a new colormap with 64 levels of gray: 
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n = 64;                  % Number of shades in new indexed image
X = round(Xrgb*(n-1)) + 1;
map2 = gray(n);
figure
image(X), title('Processed Gray Scale Indexed Image')
colormap(map2), colorbar

The color bar of the converted image is now linear and has a smooth transition 
from dark to light. The image is now suitable for wavelet decomposition.

Finally, save the converted image in a form compatible with the Wavelet 
Toolbox graphical user interface:

baboon= X;
map = map2;
save baboon baboon map

Example 2 Converting an RGB TIF Image.
Suppose the file myImage.tif contains an RGB image (noncompressed) of size 
S1xS2. Use the following commands to convert this image:

A = imread('myImage.tif'); 
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% A is an S1xS2x3 array of uint8.

A = double(A);
Xrgb  = 0.2990*A(:,:,1) + 0.5870*A(:,:,2) + 0.1140*A(:,:,3);
NbColors = 255;
X = wcodemat(Xrgb,NbColors);
map = pink(NbColors);

The same program can be used to convert BMP or JPEG files.
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One-Dimensional Discrete Stationary Wavelet Analysis
This section takes you through the features of one-dimensional discrete 
stationary wavelet analysis using the Wavelet Toolbox™ software. For more 
information see “Discrete Stationary Wavelet Transform (SWT)” on page 6-46.

The toolbox provides these functions for one-dimensional discrete stationary 
wavelet analysis. For more information on the functions, see the reference 
pages.

Analysis-Decomposition Functions

Synthesis-Reconstruction Functions

The stationary wavelet decomposition structure is more tractable than the 
wavelet one. So the utilities, useful for the wavelet case, are not necessary for 
the stationary wavelet transform (SWT).

In this section, you’ll learn to

• Load a signal

• Perform a stationary wavelet decomposition of a signal

• Construct approximations and details from the coefficients

• Display the approximation and detail at level 1

• Regenerate a signal by using inverse stationary wavelet transform

• Perform a multilevel stationary wavelet decomposition of a signal

• Reconstruct the level 3 approximation

• Reconstruct the level 1, 2, and 3 details

• Reconstruct the level 1 and 2 approximations

Function Name Purpose

swt Decomposition

Function Name Purpose

iswt Reconstruction



One-Dimensional Discrete Stationary Wavelet Analysis

2-105

• Display the results of a decomposition

• Reconstruct the original signal from the level 3 decomposition

• Remove noise from a signal

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method.

The final subsection discusses how to exchange signal and coefficient 
information between the disk and the graphical tools.

One-Dimensional Analysis Using the Command Line
This example involves a noisy Doppler test signal.

1 Load a signal. 

From the MATLAB® prompt, type 

load noisdopp

2 Set the variables. Type

s = noisdopp; 

For the SWT, if a decomposition at level k is needed, 2^k must divide evenly 
into the length of the signal. If your original signal does not have the correct 
length, you can use the Signal Extension GUI tool or the  wextend function 
to extend it.

3 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the signal using the db1 wavelet. 
Type

[swa,swd] = swt(s,1,'db1');
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This generates the coefficients of the level 1 approximation (swa) and detail 
(swd). Both are of the same length as the signal. Type

whos 

4 Display the coefficients of approximation and detail.

To display the coefficients of approximation and detail at level 1, type

subplot(1,2,1), plot(swa); title('Approximation cfs')
subplot(1,2,2), plot(swd); title('Detail cfs')

Name Size Bytes Class

noisdopp 1x1024 8192 double array 

s 1x1024 8192 double array 

swa 1x1024 8192 double array 

swd 1x1024 8192 double array 
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5 Regenerate the signal by Inverse Stationary Wavelet Transform. 

To find the inverse transform, type

A0 = iswt(swa,swd,'db1'); 

To check the perfect reconstruction, type 

err = norm(s-A0) 

err =
 2.1450e-14 

6 Construct and display approximation and detail from the coefficients.

To construct the level 1 approximation and detail (A1 and D1) from the 
coefficients swa and swd, type

nulcfs = zeros(size(swa));
A1 = iswt(swa,nulcfs,'db1'); 
D1 = iswt(nulcfs,swd,'db1');

To display the approximation and detail at level 1, type

subplot(1,2,1), plot(A1); title('Approximation A1');
subplot(1,2,2), plot(D1); title('Detail D1');
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7 Perform a multilevel Stationary Wavelet Decomposition. 

To perform a decomposition at level 3 of the signal (again using the db1 
wavelet), type

[swa,swd] = swt(s,3,'db1');

This generates the coefficients of the approximations at levels 1, 2, and 3 
(swa) and the coefficients of the details (swd). Observe that the rows of swa 
and swd are the same length as the signal length. Type

clear A0 A1 D1 err nulcfs
whos
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8 Display the coefficients of approximations and details. 

To display the coefficients of approximations and details, type

kp = 0;
for i = 1:3 

subplot(3,2,kp+1), plot(swa(i,:)); 
title(['Approx. cfs level ',num2str(i)])
subplot(3,2,kp+2), plot(swd(i,:)); 
title(['Detail cfs level ',num2str(i)])
kp = kp + 2;

end

Name Size Bytes Class

noisdopp 1x1024 8192 double array 

s 1x1024 8192 double array 

swa 3x1024 24576 double array 

swd 3x1024 24576 double array 
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9 Reconstruct approximation at Level 3 From coefficients.

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd));
A = mzero;
A(3,:) = iswt(swa,mzero,'db1');

10 Reconstruct details from coefficients.

To reconstruct the details at levels 1, 2 and 3, type

D = mzero;
for i = 1:3

swcfs = mzero;
swcfs(i,:) = swd(i,:);
D(i,:) = iswt(mzero,swcfs,'db1');

end
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11 Reconstruct and display approximations at Levels 1 and 2 from 
approximation at Level 3 and details at Levels 2 and 3.

To reconstruct the approximations at levels 2 and 3, type

A(2,:) = A(3,:) + D(3,:);
A(1,:) = A(2,:) + D(2,:);

To display the approximations and details at levels 1, 2 and 3, type

kp = 0;
for i = 1:3

subplot(3,2,kp+1), plot(A(i,:));
title(['Approx. level ',num2str(i)])
subplot(3,2,kp+2), plot(D(i,:));
title(['Detail level ',num2str(i)])
kp = kp + 2;

end
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12 Remove noise by thresholding.

To de-noise the signal, use the ddencmp command to calculate a default 
global threshold. Use the wthresh command to perform the actual 
thresholding of the detail coefficients, and then use the iswt command to 
obtain the de-noised signal.

[thr,sorh] = ddencmp('den','wv',s);
dswd = wthresh(swd,sorh,thr);
clean = iswt(swa,dswd,'db1');

To display both the original and de-noised signals, type

subplot(2,1,1), plot(s);
title('Original signal')
subplot(2,1,2), plot(clean);
title('De-noised signal')

The obtained signal remains a little bit noisy. The result can be improved by 
considering the decomposition of s at level 5 instead of level 3, and repeating 
steps 14 and 15. To improve the previous de-noising, type
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[swa,swd] = swt(s,5,'db1');
[thr,sorh] = ddencmp('den','wv',s);
dswd = wthresh(swd,sorh,thr);
clean = iswt(swa,dswd,'db1');
subplot(2,1,1), plot(s); title('Original signal')
subplot(2,1,2), plot(clean); title('De-noised signal')

A second syntax can be used for the swt and iswt functions, giving the same 
results:

lev = 5;
swc = swt(s,lev,'db1');
swcden = swc;
swcden(1:end-1,:) = wthresh(swcden(1:end-1,:),sorh,thr);
clean = iswt(swcden,'db1');

You can obtain the same plot by using the same plot commands as in step 16 
above.
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One-Dimensional Analysis for De-Noising Using the 
Graphical Interface
In this section, we explore a strategy to de-noise signals, based on the 
one-dimensional stationary wavelet analysis using the graphical interface 
tools. The basic idea is to average many slightly different discrete wavelet 
analyses.

1 Start the Stationary Wavelet Transform De-Noising 1-D Tool.

From the MATLAB prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears:

.

Click the SWT De-noising 1-D menu item. The discrete stationary wavelet 
transform de-noising tool for one-dimensional signals appears.
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2 Load data. 

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file 
noisbloc.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo.

Click the OK button. The noisy blocks signal is loaded into the SWT 
De-noising 1-D tool.
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3 Perform a Stationary Wavelet Decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level 
menu, and then click the Decompose Signal button. After a pause for 
computation, the tool displays the stationary wavelet approximation and 
detail coefficients of the decomposition. These are also called nondecimated 
coefficients since they are obtained using the same scheme as for the DWT, 
but omitting the decimation step (see “The Fast Wavelet Transform (FWT) 
Algorithm” on page 6-20).

4 De-Noise the signal using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the de-noising 
algorithm, we’ll accept the defaults of fixed form soft thresholding and 
unscaled white noise. The sliders located on the right part of the window 
control the level-dependent thresholds, indicated by yellow dotted lines 
running horizontally through the graphs of the detail coefficients to the left 
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of the window. The yellow dotted lines can also be dragged directly using the 
left mouse button over the graphs. 

Note that the approximation coefficients are not thresholded. 

Click the De-noise button.

The result is quite satisfactory, but seems to be oversmoothed around the 
discontinuities of the signal. This can be seen by looking at the residuals, 
and zooming on a breakdown point, for example around position 800.
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Selecting a Thresholding Method. Select hard for the thresholding mode instead of 
soft, and then click the De-noise button.

The residuals clearly contain some signal information.
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The result is of good quality and the residuals look like a white noise sample. 
To investigate this last point, you can get more information on residuals by 
clicking the Residuals button.

Importing and Exporting from the GUI
The tool lets you save the de-noised signal to disk. The toolbox creates a 
MAT-file in the current directory with a name of your choice.

To save the above de-noised signal, use the menu option File⇒Save De-noised 
Signal. A dialog box appears that lets you specify a directory and filename for 
storing the signal. Type the name dnoibloc. After saving the signal data to the 
file dnoibloc.mat, load the variables into your workspace:

load dnoibloc
whos

The de-noised signal is given by dnoibloc. In addition, the parameters of the 
de-noising process are available. The wavelet name is contained in wname:

wname

wname =
db1

and the level dependent thresholds are encoded in thrParams, which is a cell 
array of length 5 (the level of the decomposition). For i from 1 to 5, 
thrParams{i} contains the lower and upper bounds of the interval of 
thresholding and the threshold value (since interval dependent thresholds 
are allowed). For more information, see “One-Dimensional Variance 
Adaptive Thresholding of Wavelet Coefficients” on page 2-158. 

For example, for level 1,

Name Size Bytes Class

dnoibloc 1x1024 8192 double array 

thrParams 1x5 580 cell array 

wname 1x3 6 char array 
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thrParams{1}

ans =

1.0e+03 *

0.0010 1.0240 0.0041

Here the lower bound is 1, the upper bound is 1024, and the threshold value 
is 4.1. The total time-interval is not segmented and the procedure does not 
use the interval dependent thresholds. 
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Two-Dimensional Discrete Stationary Wavelet Analysis
This section takes you through the features of two-dimensional discrete 
stationary wavelet analysis using the Wavelet Toolbox™ software. For more 
information, see “Available Methods for De-Noising, Estimation, and 
Compression Using GUI Tools” on page 6-125.

The toolbox provides these functions for image analysis. For more information, 
see the reference pages.

Analysis-Decomposition Function

Synthesis-Reconstruction Function

The stationary wavelet decomposition structure is more tractable than the 
wavelet one. So, the utilities useful for the wavelet case are not necessary for 
the Stationary Wavelet Transform (SWT).

In this section, you’ll learn to

• Load an image

• Analyze an image

• Perform single-level and multilevel image decompositions and 
reconstructions (command line only)

• De-noise an image

Function Name Purpose

swt2 Decomposition

Function Name Purpose

iswt2 Reconstruction
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Two-Dimensional Analysis Using the Command Line
In this example, we’ll show how you can use two-dimensional stationary 
wavelet analysis to de-noise an image.

Note  Instead of using image(I) to visualize the image I, we use 
image(wcodemat(I)), which displays a rescaled version of I leading to a 
clearer presentation of the details and approximations (see the wcodemat 
reference page).

This example involves a image containing noise.

1 Load an image.

From the MATLAB® prompt, type

load noiswom
whos 

For the SWT, if a decomposition at level k is needed, 2^k must divide evenly 
into size(X,1) and size(X,2). If your original image is not of correct size, 
you can use the Image Extension GUI tool or the function wextend to 
extend it.

2 Perform a single-level Stationary Wavelet Decomposition.

Perform a single-level decomposition of the image using the db1 wavelet. 
Type

[swa,swh,swv,swd] = swt2(X,1,'db1');

Name Size Bytes Class

X 96x96 73728 double array 

map 255x3 6120 double array 
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This generates the coefficients matrices of the level-one approximation (swa) 
and horizontal, vertical and diagonal details (swh, swv, and swd, 
respectively). Both are of size-the-image size. Type

whos 

3 Display the coefficients of approximation and details.

To display the coefficients of approximation and details at level 1, type

map = pink(size(map,1));
colormap(map)
subplot(2,2,1), image(wcodemat(swa,192));
title('Approximation swa')
subplot(2,2,2), image(wcodemat(swh,192));
title('Horiz. Detail swh')
subplot(2,2,3), image(wcodemat(swv,192));
title('Vertical Detail swv')
subplot(2,2,4), image(wcodemat(swd,192));
title('Diag. Detail swd').

Name Size Bytes Class

X 96x96 73728 double array 

map 255x3 6120 double array 

swa 96x96 73728 double array 

swh 96x96 73728 double array 

swv 96x96 73728 double array 

swd 96x96 73728 double array 
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4 Regenerate the image by Inverse Stationary Wavelet Transform.

To find the inverse transform, type

A0 = iswt2(swa,swh,swv,swd,'db1');

To check the perfect reconstruction, type

err = max(max(abs(X-A0)))

err =
 1.1369e-13

5 Construct and display approximation and details from the coefficients.

To construct the level 1 approximation and details (A1, H1, V1 and D1) from 
the coefficients swa, swh, swv and swd, type

nulcfs = zeros(size(swa));
A1 = iswt2(swa,nulcfs,nulcfs,nulcfs,'db1'); 
H1 = iswt2(nulcfs,swh,nulcfs,nulcfs,'db1');
V1 = iswt2(nulcfs,nulcfs,swv,nulcfs,'db1');
D1 = iswt2(nulcfs,nulcfs,nulcfs,swd,'db1');
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To display the approximation and details at level 1, type

colormap(map)
subplot(2,2,1), image(wcodemat(A1,192));
title('Approximation A1')
subplot(2,2,2), image(wcodemat(H1,192));
title('Horiz. Detail H1')
subplot(2,2,3), image(wcodemat(V1,192));
title('Vertical Detail V1')
subplot(2,2,4), image(wcodemat(D1,192));
title('Diag. Detail D1')

6 Perform a multilevel Stationary Wavelet Decomposition.

To perform a decomposition at level 3 of the image (again using the db1 
wavelet), type

[swa,swh,swv,swd] = swt2(X,3,'db1');

This generates the coefficients of the approximations at levels 1, 2, and 3 
(swa) and the coefficients of the details (swh, swv and swd). Observe that the 
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matrices swa(:,:,i), swh(:,:,i), swv(:,:,i), and swd(:,:,i) for a given 
level i are of size-the-image size. Type

clear A0 A1 D1 H1 V1 err nulcfs
whos 

7 Display the coefficients of approximations and details.

To display the coefficients of approximations and details, type

colormap(map)
kp = 0;
for i = 1:3

subplot(3,4,kp+1), image(wcodemat(swa(:,:,i),192));
title(['Approx. cfs level ',num2str(i)])
subplot(3,4,kp+2), image(wcodemat(swh(:,:,i),192));
title(['Horiz. Det. cfs level ',num2str(i)])
subplot(3,4,kp+3), image(wcodemat(swv(:,:,i),192));
title(['Vert. Det. cfs level ',num2str(i)])
subplot(3,4,kp+4), image(wcodemat(swd(:,:,i),192));
title(['Diag. Det. cfs level ',num2str(i)])
kp = kp + 4;

end

Name Size Bytes Class

X 96x96 73728 double array 

map 255x3 6120 double array 

swa 96x96x3 221184 double array 

swh 96x96x3 221184 double array 

swv 96x96x3 221184 double array 

swd 96x96x3 221184 double array 



2 Using Wavelets

2-128

8 Reconstruct approximation at Level 3 and details from coefficients.

To reconstruct the approximation at level 3, type

mzero = zeros(size(swd));
A = mzero;
A(:,:,3) = iswt2(swa,mzero,mzero,mzero,'db1');

To reconstruct the details at levels 1, 2 and 3, type

H = mzero; V = mzero;
D = mzero;
for i = 1:3

swcfs = mzero; swcfs(:,:,i) = swh(:,:,i);
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H(:,:,i) = iswt2(mzero,swcfs,mzero,mzero,'db1');
swcfs = mzero; swcfs(:,:,i) = swv(:,:,i);
V(:,:,i) = iswt2(mzero,mzero,swcfs,mzero,'db1');
swcfs = mzero; swcfs(:,:,i) = swd(:,:,i);
D(:,:,i) = iswt2(mzero,mzero,mzero,swcfs,'db1');

end

9 Reconstruct and display approximations at Levels 1, 2 from approximation 
at Level 3 and details at Levels 1, 2, and 3.

To reconstruct the approximations at levels 2 and 3, type

A(:,:,2) = A(:,:,3) + H(:,:,3) + V(:,:,3) + D(:,:,3);
A(:,:,1) = A(:,:,2) + H(:,:,2) + V(:,:,2) + D(:,:,2);

To display the approximations and details at levels 1, 2, and 3, type

colormap(map)
kp = 0;
for i = 1:3

subplot(3,4,kp+1), image(wcodemat(A(:,:,i),192));
title(['Approx. level ',num2str(i)])
subplot(3,4,kp+2), image(wcodemat(H(:,:,i),192));
title(['Horiz. Det. level ',num2str(i)])
subplot(3,4,kp+3), image(wcodemat(V(:,:,i),192));
title(['Vert. Det. level ',num2str(i)])
subplot(3,4,kp+4), image(wcodemat(D(:,:,i),192));
title(['Diag. Det. level ',num2str(i)])
kp = kp + 4;

end
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10 Remove noise by thresholding.

To de-noise an image, use the threshold value we find using the GUI tool (see 
the next section), use the wthresh command to perform the actual 
thresholding of the detail coefficients, and then use the iswt2 command to 
obtain the de-noised image.

thr = 44.5;
sorh = 's';
dswh = wthresh(swh,sorh,thr);
dswv = wthresh(swv,sorh,thr);
dswd = wthresh(swd,sorh,thr);
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clean = iswt2(swa,dswh,dswv,dswd,'db1');

To display both the original and de-noised images, type

colormap(map)
subplot(1,2,1), image(wcodemat(X,192));
title('Original image')
subplot(1,2,2), image(wcodemat(clean,192));
title('De-noised image')

A second syntax can be used for the swt2 and iswt2 functions, giving the 
same results:

lev = 4;
swc = swt2(X,lev,'db1');
swcden = swc;
swcden(:,:,1:end-1) = wthresh(swcden(:,:,1:end-1),sorh,thr);
clean = iswt2(swcden,'db1');

You obtain the same plot by using the plot commands than in Step 14 above. 
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Two-Dimensional Analysis for De-Noising Using the 
Graphical Interface
In this section, we explore a strategy for de-noising images based on the 
two-dimensional stationary wavelet analysis using the graphical interface 
tools. The basic idea is to average many slightly different discrete wavelet 
analyses.

1 Start the Stationary Wavelet Transform De-Noising 2-D Tool.

From the MATLAB prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears:

Click the SWT De-noising 2-D menu item. 

The discrete stationary wavelet transform de-noising tool for images 
appears.
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2 Load data. 

From the File menu, choose the Load Image option.

When the Load Image dialog box appears, select the MAT-file noiswom.mat, 
which should reside in the MATLAB® directory 
toolbox/wavelet/wavedemo. Click the OK button. The noisy woman image 
is loaded into the SWT De-noising 2-D tool.
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3 Perform a Stationary Wavelet Decomposition.

Select the haar wavelet from the Wavelet menu, select 4 from the Level 
menu, and then click the Decompose Image button.

The tool displays the histograms of the stationary wavelet detail coefficients 
of the image on the left of the window. These histograms are organized as 
follows:

- From the bottom for level 1 to the top for level 4

- On the left horizontal coefficients, in the middle diagonal coefficients, and 
on the right vertical coefficients

4 De-noise the image using the Stationary Wavelet Transform.

While a number of options are available for fine-tuning the de-noising 
algorithm, we’ll accept the defaults of fixed form soft thresholding and 
unscaled white noise. The sliders located to the right of the window control 
the level dependent thresholds indicated by yellow dotted lines running 
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vertically through the histograms of the coefficients on the left of the 
window. Click the De-noise button.

The result seems to be oversmoothed and the selected thresholds too 
aggressive. Nevertheless, the histogram of the residuals is quite good since 
it is close to a Gaussian distribution, which is the noise introduced to 
produce the analyzed image noiswom.mat from a piece of the original image 
woman.mat.

5 Selecting a thresholding method.

From the Select thresholding method menu, choose the Penalize low 
item. The associated default for the thresholding mode is automatically set 
to hard; accept it. Use the Sparsity slider to adjust the threshold value close 
to 44.5, and then click the De-noise button.
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The result is quite satisfactory, although it is possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the 
Sparsity slider to adjust the threshold value close to 40.44, and then click 
the De-noise button.
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Importing and Exporting Information from the 
Graphical Interface
The tool lets you save the de-noised image to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the de-noised image from the present de-noising process, use the menu 
option File⇒Save De-noised Image. A dialog box appears that lets you specify 
a directory and filename for storing the image. Type the name dnoiswom. After 
saving the image data to the file dnoiswom.mat, load the variables into your 
workspace:

load dnoiswom
whos
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The de-noised image is X and map is the colormap. In addition, the parameters 
of the de-noising process are available. The wavelet name is contained in 
wname, and the level dependent thresholds are encoded in valTHR. The variable 
valTHR has four columns (the level of the decomposition) and three rows (one 
for each detail orientation).

Name Size Bytes Class

X 96x96 73728 double array 

map 255x3 6120 double array 

valTHR 3x4 96 double array 

wname 1x4 8 char array 
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One-Dimensional Wavelet Regression Estimation 
This section takes you through the features of one-dimensional wavelet 
regression estimation using one of the Wavelet Toolbox™ specialized tools. The 
toolbox provides a graphical interface tool to explore some de-noising schemes 
for equally or unequally sampled data.

For the examples in this section, switch the extension mode to symmetric 
padding, using the command

dwtmode('sym')

One-Dimensional Estimation Using the GUI for 
Equally Spaced Observations (Fixed Design)

1 Start the Regression Estimation 1-D Tool.

From the MATLAB® prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Regression Estimation 1-D menu item. The discrete wavelet 
analysis tool for one-dimensional regression estimation appears.
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2 Load data.

From the File menu, choose the Load Data for Fixed Design Regression 
option.

When the Load data for Fixed Design Regression dialog box appears, 
select the demo MAT-file noisbloc.mat, which should reside in the 
MATLAB directory toolbox/wavelet/wavedemo. 

Click the OK button. The noisy blocks data is loaded into the Regression 
Estimation 1-D - Fixed Design tool.
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The loaded data denoted (X,Y) and the processed data obtained after a 
binning, are displayed. 

3 Choose the processed data.

The default value for the number of bins is 256 for this example. Enter 64 in 
the Nb bins (number of bins) edit box, or use the slider to adjust the value. 
The new binned data to be processed appears.

The binned data appears to be very smoothed. Select 1000 from the Nb bins 
edit and press Enter or use the slider. The new data to be processed appears.

The binned data appears to be very close to the initial data, since noisbloc 
is of length 1024.

Initial data Processed data

after a binning

Select number of bins

for the processed data
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4 Perform a Wavelet Decomposition of the processed data.

Select the haar wavelet from the Wavelet menu and select 5 from the Level 
menu, and then click the Decompose button. After a pause for computation, 
the tool displays the detail coefficients of the decomposition.

5 Perform a regression estimation.

While a number of options are available for fine-tuning the estimation 
algorithm, we’ll accept the defaults of fixed form soft thresholding and 
unscaled white noise. The sliders located to the right of the window control 
the level dependent thresholds, indicated by yellow dotted lines running 
horizontally through the graphs on the left part of the window.

Continue by clicking the Estimate button.
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You can see that the process removed the noise and that the blocks are well 
reconstructed. The regression estimate (in yellow) is the sum of the signals 
located below it: the approximation a5 and the reconstructed details after 
coefficient thresholding.

You can experiment with the various predefined thresholding strategies by 
selecting the appropriate options from the menu located on the right part of 
the window or directly by dragging the yellow horizontal lines with the left 
mouse button.

Let us now illustrate the regression estimation using the graphical interface 
for randomly or irregularly spaced observations, focusing on the differences 
from the previous situation.
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One-Dimensional Estimation Using the GUI for 
Randomly Spaced Observations (Stochastic Design)

1 From the File menu, choose the Load⇒Data for Stochastic Design 
Regression option. When the Load data for Stochastic Design 
Regression dialog box appears, select the demo MAT-file ex1nsto.mat, 
which should reside in the MATLAB directory toolbox/wavelet/wavedemo. 
Click the OK button. This short set of data (of size 500) is loaded into the 
Regression Estimation 1-D -- Stochastic Design tool.

 

The loaded data denoted (X,Y), the histogram of X, and the processed data 
obtained after a binning are displayed. The histogram is interesting, 
because the values of X are randomly distributed. The binning step is 
essential since it transforms a problem of regression estimation for 
irregularly spaced X data into a classical fixed design scheme for which fast 
wavelet transform can be used.

2 Select the sym4 wavelet from the Wavelet menu, select 5 from the Level 
menu, and enter 125 in the Nb bins edit box. Click the Decompose button. 
The tool displays the detail coefficients of the decomposition.
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3 From the Select thresholding method menu, select the item Penalize low 
and click the Estimate button.

4 Check Show Estimated Function to validate the fit of the original data.
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Importing and Exporting Information from the 
Graphical Interface

Saving Function
This tool lets you save the estimated function to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the estimated function from the present estimation, use the menu 
option File⇒Save Estimated Function. A dialog box appears that lets you 
specify a directory and filename for storing the function. Type the name 
fex1nsto. After saving the function data to the file fex1nsto.mat, load the 
variables into your workspace:

load fex1nsto 
whos 

The estimated function is given by xdata and ydata. The length of these vectors 
is equal to the number of bins you choose in step 2. In addition, the parameters 
of the estimation process are given by the wavelet name contained in wname:

wname

wname =
sym4

and the level dependent thresholds contained in thrParams, which is a cell 
array of length 5 (the level of the decomposition). For i from 1 to 5, 
thrParams{i} contains the lower and upper bounds of the interval of 
thresholding and the threshold value (since interval dependent thresholds are 
allowed). For more information, see “One-Dimensional Variance Adaptive 
Thresholding of Wavelet Coefficients” on page 2-158. 

Name Size Bytes Class

thrParams 1x5 580 cell array 

wname 1x4 8 char array 

xdata 1x125 1000 double array 

ydata 1x125 1000 double array 
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For example, for level 1,

thrParams{1}

ans =
-0.4987 0.4997 1.0395

Loading Data
To load data for regression estimation, your file must contain at least one 
vector. If your file contains only one vector, this vector is considered as ydata 
and an xdata vector is automatically generated.

If your file contains at least two vectors, they must be called xdata and ydata 
or x and y.

These vectors must be the same length.

For example, load the file containing the data considered in the previous 
example:

clear
load ex1nsto
whos 

At the end of this section, turn back the extension mode to zero padding using 
the command

dwtmode('zpd') 

Name Size Bytes Class

x 1x500 4000 double array 

y 1x500 4000 double array 
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One-Dimensional Wavelet Density Estimation 
This section takes you through the features of one-dimensional wavelet density 
estimation using one of the Wavelet Toolbox™ specialized tools. For more 
information, see “Function Estimation: Density and Regression” on page 6-116.

The toolbox provides a graphical interface tool to estimate the density of a 
sample and complement well known tools like the histogram (available from 
the MATLAB® core) or kernel based estimates.

For the examples in this section, switch the extension mode to symmetric 
padding, using the command 

dwtmode('sym')

One-Dimensional Estimation Using the Graphical 
Interface

1 Start the Density Estimation 1-D Tool.

From the MATLAB prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Density Estimation 1-D menu item. The discrete wavelet analysis 
tool for one-dimensional density estimation appears.
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2 Load data.

From the File menu, choose the Load⇒Data for Density Estimate option.

When the Load data for Density Estimate dialog box appears, select the 
demo MAT-file ex1cusp1.mat, which should reside in the MATLAB 
directory toolbox/wavelet/wavedemo. Click the OK button. The noisy cusp 
data is loaded into the Density Estimation 1-D tool.
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The sample, a 64-bin histogram, and the processed data obtained after a 
binning are displayed. In this example, we’ll accept the default value for the 
number of bins (250). The binned data, suitably normalized, will be 
processed by wavelet decomposition.

3 Perform a Wavelet Decomposition of the binned data.

Select the sym6 wavelet from the Wavelet menu and select 4 from the Level 
menu, and then click the Decompose button. After a pause for computation, 
the tool displays the detail coefficients of the decomposition of the binned 
data.

Initial data Binned data

A 64 bin histogram of the data Select number of bins for the processed data
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4 Perform a density estimation.

We’ll accept the defaults of global soft thresholding. The sliders located on 
the right of the window control the level dependent thresholds, indicated by 
yellow dotted lines running horizontally through the graphs on the left of the 
window.

Continue by clicking the Estimate button.
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You can see that the estimation process delivers a very irregular resulting 
density. The density estimate (in yellow) is the normalized sum of the 
signals located below it: the approximation a4 and the reconstructed details 
after coefficient thresholding.

5 Perform thresholding.

You can experiment with the various predefined thresholding strategies by 
selecting the appropriate options from the menu located on the right of the 
window or directly by dragging the yellow lines with the left mouse button. 
Let’s try another estimation method.

From the menu Select thresholding method, select the item By level 
threshold 2. For more information about these methods, see “Function 
Estimation: Density and Regression” on page 6-116. Next, click the 
Estimate button.
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The estimated density is more satisfactory. It correctly identifies the smooth 
part of the density and the cusp at 0.7.

Importing and Exporting Information from the 
Graphical Interface
The tool lets you save the estimated density to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the estimated density, use the menu option File⇒Save Density. A 
dialog box appears that lets you specify a directory and filename for storing the 
density. Type the name dex1cusp. After saving the density data to the file 
dex1cusp.mat, load the variables into your workspace:

load dex1cusp
whos
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The estimated density is given by xdata and ydata. The length of these vectors 
is of the same as the number of bins you choose in step 4. In addition, the 
parameters of the estimation process are given by the wavelet name in wname. 

wname

wname =
sym6

and the level dependent thresholds contained in thrParams, which is a cell 
array of length 4 (the level of the decomposition). For i from 1 to 4, 
thrParams{i} contains the lower and upper bounds of the interval of 
thresholding and the threshold value (since interval dependent thresholds are 
allowed). For more information, see “One-Dimensional Variance Adaptive 
Thresholding of Wavelet Coefficients” on page 2-158. For example, for level 1,

thrParams{1}
ans =

0.0560    0.9870    2.1179

Note  When you load data from a file using the menu option File⇒Load Data 
for Density Estimate, the first one-dimensional variable encountered in the 
file is considered the signal. Variables are inspected in alphabetical order.

At the end of this section, turn the extension mode back to zero padding using

dwtmode('zpd')

Name Size Bytes Class

thrParams 1x4 464 cell array 

wname 1x4 8 char array 

xdata 1x250 2000 double array 

ydata 1x250 2000 double array 
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One-Dimensional Variance Adaptive Thresholding of 
Wavelet Coefficients

This section takes you through the features of local thresholding of wavelet 
coefficients for one-dimensional signals or data. This capability is available 
through graphical interface tools throughout the Wavelet Toolbox™ software:

• Wavelet De-noising 1-D

• Wavelet Compression 1-D

• SWT De-noising 1-D

• Regression Estimation 1-D

• Density Estimation 1-D

This tool allows you to define, level by level, time-dependent (x-axis-dependent) 
thresholds, and then increase the capability of the de-noising strategies 
handling nonstationary variance noise. More precisely, the model assumes 
that the observation is equal to the interesting signal superimposed on noise. 
The noise variance can vary with time. There are several different variance 
values on several time intervals. The values as well as the intervals are 
unknown. This section will use one of the graphical interface tool (SWT 
De-noising 1-D) to illustrate this capability. The behavior of all the 
above-mentioned tools is similar.



One-Dimensional Variance Adaptive Thresholding of Wavelet Coefficients

2-159

One-Dimensional Local Thresholding for De-noising 
Using the Graphical Interface

1 From the MATLAB® prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears.

Click the SWT De-noising 1-D menu item. 

The discrete stationary wavelet transform de-noising tool for one-dimensional 
signals appears.
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2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the MAT-file nblocr1.mat, 
which should reside in the MATLAB directory toolbox/wavelet/wavedemo. 
Click the OK button. The noisy blocks signal with two change points in the 
noise variance located at positions 200 and 600, is loaded into the SWT 
De-noising 1-D tool.

3 Perform signal decomposition.

Select the db1 wavelet from the Wavelet menu and select 5 from the Level 
menu, and then click the Decompose Signal button. After a pause for 
computation, the tool displays the stationary wavelet approximation and 
detail coefficients of the decomposition.

Accept the defaults of Fixed form soft thresholding and Unscaled white 
noise. Click the De-noise button.
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The result is quite satisfactory, but seems to be oversmoothed when the 
signal is irregular. 

Select hard for the thresholding mode instead of soft, and then click the 
De-noise button.
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The result is not satisfactory. The de-noised signal remains noisy before 
position 200 and after position 700. This illustrates the limits of the classical 
de-noising strategies. In addition, the residuals obtained during the last 
trials clearly suggest to try a local thresholding strategy.

4 Generate interval-dependent thresholds.

Click the Int. dependent threshold Settings button located at the bottom 
of the thresholding method frame. A new window titled Int. Dependent 
Threshold Settings for figure ... appears. 
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Click the Generate button. After a pause for computation, the tool displays 
the default intervals associated with adapted thresholds.

Three intervals are proposed. Since the variances for the three intervals are 
very different, the optimization program easily detects the correct structure. 
Nevertheless, you can visualize the intervals proposed for a number of 
intervals from 1 to 6 using the Select Number of Intervals menu (which 
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replaces the Generate button). Using the default intervals automatically 
propagates the interval delimiters and associated thresholds to all levels.

De-noise with interval-dependent thresholds. Click the Close button of the Int. 
Dependent Threshold Settings for ... window. When the Update 
thresholds dialog box appears, click Yes. The SWT De-noising 1-D main 
window is updated. The sliders located to the right of the window control the 
level and interval dependent thresholds. For a given interval, the threshold 
is indicated by yellow dotted lines running horizontally through the graphs 
on the left of the window. The red dotted lines running vertically through the 
graphs indicate the interval delimiters. Next click the De-noise button.

The result is quite satisfactory, but some unpleasant coefficients remain.

Modifying Interval Dependent Thresholds. The thresholds can be increased to keep 
only the highest values of the wavelet coefficients at each level. Do this by 
dragging the yellow lines directly on the graphs on the left of the window, or 
using the View Axes button (located at the bottom of the screen near the Close 
button), which allows you to see each axis in full size. Another way is to edit 
the thresholds by selecting the interval number located near the sliders and 
typing the desired value.
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Note that you can also change the interval limits by holding down the left 
mouse button over the vertical dotted red lines, and dragging them.

You can also define your own interval dependent strategy. Click the Int. 
dependent threshold settings button. The Int. Dependent Threshold 
Settings for ... window appears again. We shall explore this window for a 
little while. Click the Delete button, so that the interval delimiters 
disappear. Double click the left mouse button to define new interval 
delimiters; for example at positions 300 and 500 and adjust the thresholds 
manually. Each level must be considered separately using the Level menu 
for adjusting the thresholds. The current interval delimiters can be 
propagated to all levels by clicking the Propagate button. So click the 
Propagate button. Adjust the thresholds for each level, one by one. At the 
end, click the Close button of the Int. Dependent Threshold settings for ... 
window. When the Update thresholds dialog box appears, click Yes. Then 
click the De-noise button.

Note that

a By double-clicking again on an interval delimiter with the left mouse 
button, you delete it.

b You can move the interval delimiters (vertical red dotted lines) and the 
threshold levels (horizontal yellow dotted lines) by holding down the left 
mouse button over these lines and dragging them.

c The maximum number of interval delimiters at each level is 10.
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Some Examples of De-noising with Interval Dependent Thresholds.
From the File menu, choose the Example Analysis⇒Noisy Signals - 
Dependent Noise Variance option. The proposed items contain, in addition to 
the usual information, the “true” number of intervals. You can then experiment 
with various signals for which local thresholding is needed. 

For example, choose the last item, which is a real-world electrical signal. The 
entire process performed on steps 4, 5, 8, 9, and 10 is demonstrated.

Importing and Exporting Information from the 
Graphical Interface
The tool lets you save the de-noised signal to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the de-noised signal from the present de-noising process, use the menu 
option File⇒Save De-noised Signal. A dialog box appears that lets you specify 
a directory and filename for storing the signal. Type the name dnelec. After 
saving the signal data to the file dnelec.mat, load the variables into your 
workspace:

load dnelec 
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whos

The de-noised signal is given by dnelec. In addition, the parameters of the 
de-noising process are given by the wavelet name contained in wname:

wname

wname =
haar

and the level dependent thresholds contained in thrParams, which is a cell 
array of length 4 (the level of the decomposition). For i from 1 to 4, 
thrParams{i} is an array nbintx3 (where nbint is the number of intervals, 
here 3), and each row contains the lower and upper bounds of the interval of 
thresholding and the threshold value. For example, for level 1,

thrParams{1}
ans =

1.0e+03 *

0.0010 0.0980 0.0060
0.0980 1.1240 0.0204
1.1240 2.0000 0.0049

Name Size Bytes Class

dnelec 1x2000 16000 double array 

thrParams 1x4 656 cell array 

wname 1x4 8 char array 
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One-Dimensional Selection of Wavelet Coefficients Using 
the Graphical Interface

This section takes you through the features of one-dimensional selection of 
wavelet coefficients using one of the Wavelet Toolbox™ specialized tools. The 
toolbox provides a graphical interface tool to explore some reconstruction 
schemes based on various wavelet coefficients selection strategies:

• Global selection of biggest coefficients (in absolute value)

• By level selection of biggest coefficients

• Automatic selection of biggest coefficients

• Manual selection of coefficients

For this section, switch the extension mode to symmetric padding using the 
command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 1-D Tool.

From the MATLAB® prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Wavelet Coefficients Selection 1-D menu item. The discrete 
wavelet coefficients selection tool for one-dimensional signals appears.
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2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the demo MAT-file 
noisbump.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. The noisy bumps data is 
loaded into the Wavelet Coefficients Selection 1-D tool.

3 Perform a Wavelet Decomposition.

Select the db3 wavelet from the Wavelet menu and select 6 from the Level 
menu, and then click the Analyze button.



One-Dimensional Selection of Wavelet Coefficients Using the Graphical Interface

2-171

The tool displays below the original signal (on the left) its wavelet 
decomposition: the approximation coefficients A6 and detail coefficients from 
D6 at the top to D1 at the bottom. In the middle of the window, below the 
synthesized signal (which at this step is the same, since all the wavelet 
coefficients are kept) it displays the selected coefficients.
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Selecting Biggest Coefficients Globally. On the right of the window, find a column 
labeled Kept. The last line shows the total number of coefficients: 1049. This 
is a little bit more than the number of observations, which is 1024. You can 
choose the number of selected biggest coefficients by typing a number 
instead of 1049 or by using the slider. Type 40 and press Enter. The 
numbers of selected biggest coefficients level by level are updated (but 
cannot be modified since Global is the current selection method). Then click 
the Apply button. The resulting coefficients are now displayed.

In the previous trial, the approximation coefficients were all kept. It is 
possible to relax this constraint by selecting another option from the App. 
cfs menu (Approximation Coefficients abbreviation). Choose the Unselect 
option and click the Apply button.
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None of the approximation coefficients are kept.

From the App. cfs menu, select the Selectable option. Type 80 for the 
number of selected biggest coefficients and press Enter. Then, click the 
Apply button.

Some of the approximation coefficients (15) have been kept.
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Selecting Biggest Coefficients by Level. From the Define Selection method menu, 
select the By Level option. You can choose the number of selected biggest 
coefficients by level or select it using the sliders. Type 4 for the 
approximation and each detail, and then click the Apply button.

Selecting Coefficients Manually. From the Define Selection method menu, select 
the Manual option. The tool displays on the left part, below the original 
signal, its wavelet decomposition. At the beginning, no coefficients are kept 
so no selected coefficient is visible and the synthesized signal is null.
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Select seven coefficients individually by double clicking each of them using 
the left mouse button. The color of selected coefficients switches from green 
to yellow for the details and from blue to yellow for the approximation, which 
appear on the left of the window and appear in yellow on the middle part. 
Click the Apply button.

You can deselect the currently selected coefficients by double clicking each 
of them. Another way to select or deselect a set of coefficients is to use the 
selection box. Drag a rubber band box (hold down the left mouse button) over 
a portion of the coefficient axes (original or selected) containing all the 
currently selected coefficients. Click the Unselect button located on the 
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right of the window. Click the Apply button. The tool displays the null signal 
again.

Note that when the coefficients are very close, it is easier to zoom in before 
selecting or deselecting them.

Drag a rubber band box over the portion of the coefficient axes around the 
position 800 and containing all scales and click the Select button. Click the 
Apply button.

This illustrates that wavelet analysis is a local analysis since the signal is 
perfectly reconstructed around the position 800. Check the Show Original 
Signal to magnify it.

Selecting Coefficients Automatically. From the Define Selection method menu, 
select the Stepwise movie option. The tool displays the same initial window 
as in the manual selection mode, except for the left part of it. 
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Let’s perform the stepwise movie using the k biggest coefficients, from k = 1 
to k = 31 in steps of 1, click the Start button. As soon as the result is 
satisfactory, click the Stop button.

4 Save the synthesized signal.

The tool lets you save the synthesized signal to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the synthesized signal from the present selection, use the menu 
option File⇒Save Synthesized Signal. A dialog box appears that lets you 
specify a directory and filename for storing the signal and the wavelet name. 

At the end of this section, turn back the extension mode to zero padding 
using the command 

dwtmode('zpd')
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Two-Dimensional Selection of Wavelet Coefficients Using 
the Graphical Interface

This section takes you through the features of two-dimensional selection of 
wavelet coefficients using one of the Wavelet Toolbox™ specialized tools. The 
toolbox provides a graphical interface tool to explore some reconstruction 
schemes based on various wavelet coefficient selection strategies:

• Global selection of biggest coefficients (in absolute value)

• By level selection of biggest coefficients

• Automatic selection of biggest coefficients.

This section will be short since the functionality are similar to the 
one-dimensional ones examined in the previous section.

For this section, switch the extension mode to symmetric padding using the 
command

dwtmode('sym')

1 Start the Wavelet Coefficients Selection 2-D Tool.

From the MATLAB® prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Wavelet Coefficients Selection 2-D menu item. The discrete 
wavelet coefficients selection tool for images appears.
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2 Load data.

From the File menu, choose the Load Image option.

When the Load Image dialog box appears, select the demo MAT-file 
noiswom.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. The noisy woman data is 
loaded into the Wavelet Coefficients Selection 2-D tool.

3 Perform a Wavelet Decomposition.

Select the sym4 wavelet from the Wavelet menu and select 4 from the Level 
menu, and then click the Analyze button.



Two-Dimensional Selection of Wavelet Coefficients Using the Graphical Interface

2-181

The tool displays its wavelet decomposition below the original image (on the 
left). The selected coefficients are displayed in the middle of the window, 
below the synthesized image (which, at this step, is the same since all the 
wavelet coefficients are kept). There are 11874 coefficients, a little bit more 
than the original image number of pixels, which is 96x96 = 9216.

Note  The difference between 9216 and 11874 comes from the extra 
coefficients generated by the redundant DWT using the current extension 
mode (symmetric, 'sym'). Let us mention that since 96 is divisible evenly into 
24 = 16, using the periodic extension mode ('per') for the DWT, you obtain for 
each level the minimum number of coefficients. More precisely, if you type 
dwtmode('per') and repeat steps 2 to 5, you get the figure displayed below.
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.

Selecting Biggest Coefficients Globally. On the right of the window, find a column 
labeled Kept. The last line shows the total number of coefficients: 11874. 
This is a little bit more than the original image number of pixels. You can 
choose the number of selected biggest coefficients by typing a number 
instead of 11874, or by using the slider. Type 1100 and press Enter. The 
numbers of selected biggest coefficients level by level are updated (but 
cannot be modified, since Global is the current selection method). 

Then click the Apply button.
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In the previous trial, the approximation coefficients were all kept. It is 
possible to relax this constraint by selecting another option from the App. 
cfs menu (see “One-Dimensional Selection of Wavelet Coefficients Using the 
Graphical Interface” on page 2-168).

Selecting Biggest Coefficients by Level. From the Define Selection method menu, 
select the By Level option. You can choose the number of selected biggest 
coefficients by level, or select it using the sliders. Type 100 for each detail, 
and then click the Apply button.
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Selecting Coefficients Automatically. From the Define Selection method menu, 
select the Stepwise movie option. The tool displays its wavelet 
decomposition on the left, below the original image. At the beginning, no 
coefficients are kept so the synthesized image is null. Perform the stepwise 
movie using the k biggest coefficients, from k = 144 to k = 1500, in steps of 
20. Click the Start button. As soon as the result is satisfactory, click the 
Stop button.
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We’ve stopped the movie at 864 coefficients (including the number of 
approximation coefficients).

4 Save the synthesized image.

This tool lets you save the synthesized image to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the synthesized image from the present selection, use the menu 
option File⇒Save Synthesized Image. A dialog box appears that lets you 
specify a directory and filename for storing the image and, in addition, the 
colormap and the wavelet name.

At the end of this section, turn back the extension mode to zero padding 
using the command

dwtmode('zpd')
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One-Dimensional Extension
This section takes you through the features of one-dimensional extension or 
truncation using one of the Wavelet Toolbox™ utilities.

One-Dimensional Extension Using the Command 
Line
The function wextend performs signal extension. For more information, see its 
reference page.

One-Dimensional Extension Using the Graphical 
Interface

1 Start the Signal Extension Tool.

From the MATLAB® prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Signal Extension menu item. 

2 Load data.

From the File menu, choose the Load Signal option.

When the Load Signal dialog box appears, select the demo MAT-file 
noisbloc.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button. The noisy blocks data is 
loaded into the Signal Extension tool.
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3 Extend the signal.

Enter 1300 in the Desired Length box of the extended signal, and select the 
Left option from the Direction to extend menu. Then accept the default 
Symmetric for the Extension mode, and click the Extend button.
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The tool displays the original signal delimited by a red box and the 
transformed signal delimited by a yellow box. The signal has been extended 
by left symmetric boundary values replication.

Select the Both option from the Direction to extend menu and select the 
Continuous option from the Extension mode menu. Click the Extend 
button.
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The signal is extended in both directions by replicating the first value to the 
left and the last value to the right, respectively.

Extending Signal for SWT. Since the decomposition at level k of a signal using SWT 
requires that 2^k divides evenly into the length of the signal, the tool 
provides a special option dedicated to this kind of extension.

Select the For SWT option from the Extension mode menu. Click the 
Extend button.
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Since the signal is of length 1024 = 2^10, no extension is needed so the 
Extend button is ineffective.

From the File menu, choose the Example Extension option and select the 
last item of the list.
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Since the signal is of length 1000 and the decomposition level needed for 
SWT is 10, the tool performs a minimal right periodic extension. The 
extended signal is of length 1024. 

Select 4 from the SWT Decomposition Level menu, and then click the 
Extend button. The tool performs a minimal right periodic extension 
leading to an extended signal of length 1008 (because 1008 is the smallest 
integer greater than 1000 divisible by 2^4 = 16).

Select 2 from the SWT Decomposition Level menu. Since 1000 is divisible 
by 4, no extension is needed.
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Truncating Signal. The same tool allows you to truncate a signal.

Since truncation is not allowed for the special mode For SWT, select the 
Periodic option from the Extension mode menu. Type 900 for the desired 
length and press Enter. Click the Truncate button.

.

The tool displays the original signal delimited by a red box and the truncated 
signal delimited by a yellow box. The signal has been truncated by deleting 
100 values on the right side.
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Importing and Exporting Information from the 
Graphical Interface
This tool lets you save the transformed signal to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the transformed signal, use the menu option File⇒Save Transformed 
Signal. A dialog box appears that lets you specify a directory and filename for 
storing the image. Type the name tfrqbrk. After saving the signal data to the 
file tfrqbrk.mat, load the variable into your workspace:

load tfrqbrk
whos 

Name Size Bytes Class

tfrqbrk 1x900 7200 double array 
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Two-Dimensional Extension
This section takes you through the features of two-dimensional extension or 
truncation using one of the Wavelet Toolbox™ utilities. This section is short 
since it is very similar to “One-Dimensional Extension” on page 2-186.

Two-Dimensional Extension Using the Command 
Line
The function wextend performs image extension. For more information, see its 
reference page.

Two-Dimensional Extension Using the Graphical 
Interface

1 Start the Image Extension Tool:

From the MATLAB® prompt, type

wavemenu
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The Wavelet Toolbox Main Menu appears.

Click the Image Extension menu item. 

2 Extend (or truncate) the image

From the File menu, choose the Example Extension option and select the 
first item of the list.
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The tool displays the original image delimited by a red box and the 
transformed image delimited by a yellow box. The image has been extended 
by zero padding. The right part of the window allows you to control the 
parameters of the extension/truncation process for the vertical and 
horizontal directions, respectively. The possibilities are similar to the 
one-dimensional ones described in “One-Dimensional Extension” on 
page 2-186. 

To see some more extension cases, look at the general demos of the toolbox 
(using the wavedemo command).
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Importing and Exporting Information from the 
Graphical Interface
This tool lets you save the transformed image to disk. The toolbox creates a 
MAT-file in the current directory with a name you choose.

To save the transformed image, use the menu option File⇒Save Transformed 
Image. 

A dialog box appears that lets you specify a directory and filename for storing 
the image. Type the name woman2. After saving the image data to the file 
woman2.mat, load the variable into your workspace:

load woman2
whos 

The transformed image is stored together with its colormap.

Name Size Bytes Class

woman2 200x220 352000 double array 

map 253x3 6120 double array 
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Image Fusion
This section takes you through the features of Image Fusion, one of the 
Wavelet Toolbox™ specialized tools. 

For the examples in this section, switch the extension mode to symmetric 
padding, using the command:

dwtmode('sym')

The toolbox requires only one function for image fusion: wfusimg. You’ll find 
full information about this function in its reference page. For more details on 
fusion methods see the wfusmat function.

In this section, you’ll learn how to

• Load images

• Perform decompositions

• Merge images from their decompositions

• Restore images from their decompositions

• Save image after fusion

Since you can perform analyses either from the command line or using the 
graphical interface tools, this section has subsections covering each method.

The principle of image fusion using wavelets is to merge the wavelet 
decompositions of the two original images using fusion methods applied to 
approximations coefficients and details coefficients (see [MisMOP03] and 
[Zee98] in “References” on page 6-152).

The two images must be of the same size and are supposed to be associated 
with indexed images on a common colormap (see wextend to resize images).

Two examples are examined: the first one merges two different images leading 
to a new image and the second restores an image from two fuzzy versions of an 
original image.

Image Fusion Using the Command Line

Example 1 — Fusion of Two Different Images

1 Load two original images: a mask and a bust.
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load mask; X1 = X;
load bust; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using db2 by 
taking two different fusion methods: fusion by taking the mean for both 
approximations and details,

XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

and fusion by taking the maximum for approximations and the minimum for 
the details.

XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');

3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square, title('Mask')
subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square, 
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square, 
title('Synthesized image, max-min')
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Example 2 — Restoration by Fusion from Fuzzy Images

1 Load two fuzzy versions of an original image.

load cathe_1; X1 = X;
load cathe_2; X2 = X;

2 Merge the two images from wavelet decompositions at level 5 using sym4 by 
taking the maximum of absolute value of the coefficients for both 
approximations and details.

XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

3 Plot original and synthesized images.

colormap(map);
subplot(221), image(X1), axis square, 
title('Catherine 1')
subplot(222), image(X2), axis square, 
title('Catherine 2')



2 Using Wavelets

2-202

subplot(223), image(XFUS), axis square, 
title('Synthesized image')

The synthesized image is a restored version of good quality of the common 
underlying original image.

Image Fusion Using the Graphical Interface

1 Start the Image Fusion Tool. 

From the MATLAB® prompt, type

wavemenu

to display the Wavelet Toolbox Main Menu and then click the Image 
Fusion menu item to display the Image Fusion Tool.
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2 Load original images.

From the File menu, choose the Load Image 1 option.

When the Load Image 1 dialog box appears, select the demo MAT-file 
mask.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.

Perform the same sequence choosing the Load Image 2 option and selecting 
the demo MAT-file bust.mat.
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3 Perform wavelet decompositions.

Using the Wavelet and Level menus located to the upper right, determine 
the wavelet family, the wavelet type, and the number of levels to be used for 
the analysis. 

For this analysis, select the db2 wavelet at level 5.

Click the Decompose button. 

After a pause for computation, the tool displays the two analyses.

4 Merge two images from their decompositions.

From Select Fusion Method frame, select the item mean for both Approx. 
and Details. Next, click the Apply button.
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The synthesized image and its decomposition (which is equal to the fusion of 
the two decompositions) appear. The new image produced by fusion clearly 
exhibits features from the two original ones.

Let us now examine another example illustrating restoration using image 
fusion.

5 Restore the image using image fusion.

From the File menu, load Image 1 by selecting the demo MAT-file 
cathe_1.mat, and Image 2 by selecting the demo MAT-file cathe_2.mat.

6 Using the Wavelet and Level menus, select the sym4 wavelet at level 5. 
Click the Decompose button.

7 From Select Fusion Method frame, select the item max for both Approx. 
and Details. Next, click the Apply button.
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The synthesized image is a restored version of good quality of the common 
underlying original image.

Saving the Synthesized Image
The Image Fusion Tool lets you save the synthesized image to disk. The toolbox 
creates a MAT-file in the current directory with a name you choose.

To save the synthesized image from the present selection, use the menu option 
File⇒Save Synthesized Image. 

A dialog box appears that lets you specify a directory and filename for storing 
the image. After you save the image data to the file rescathe.mat, the 
synthesized image is given by X and the colormap by map. 



2 Using Wavelets

2-208

One-Dimensional Fractional Brownian Motion Synthesis
This section takes you through the features of One-Dimensional Fractional 
Brownian Motion Synthesis using one of the Wavelet Toolbox™ specialized 
tools. 

For the examples in this section, switch the extension mode to symmetric 
padding, using the command

dwtmode('sym')

The toolbox requires only one function to generate a fractional Brownian 
motion signal: wfbm. You’ll find full information about this function in its 
reference page.

In this section, you’ll learn how to

• Generate a fractional Brownian motion signal

• Look at its main properties

• Save the synthesized signal

Since you can perform the generation either from the command line or using 
the graphical interface tools, this section has subsections covering each 
method.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process 
depending on the Hurst parameter 0 < H < 1. It generalizes the ordinary 
Brownian motion corresponding to H = 0.5 and whose derivative is the white 
noise. The fBm is self-similar in distribution and the variance of the 
increments is given by 

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Fractional Brownian Motion Synthesis Using the 
Command Line
According to the value of  H, the fBm exhibits for H > 0.5, long-range 
dependence and for H < 0.5, short or intermediate dependence.

Let us give an example of each situation using the wfbm M-file, which generates 
a sample path of this process.
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% Generate fBm for H = 0.3 and H = 0.7

% Initialize the randn generator
randn('state',1)

% Set the parameter H and the sample length
H = 0.3; lg = 1000;
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');

% Reset randn generator and parameter H
randn('state',1); H = 0.7;
% Generate and plot wavelet-based fBm for H = 0.7
fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to
% Define wavelet and level of decomposition
% w = ' db10'; ns = 6;
% Generate
% fBm07 = wfbm(H,lg,'plot',w,ns);
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It appears that fBm07 clearly exhibits a stronger low-frequency component and 
has, locally, a less irregular behavior.

Fractional Brownian Motion Synthesis Using the 
Graphical Interface

1 Start the Fractional Brownian Motion Synthesis Tool.

From the MATLAB® prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears. Click Fractional Brownian 
Generation 1-D to display the One-Dimensional Fractional Brownian 
Motion Synthesis Tool.
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2 Generate fBm.

From the Fractal Index edit button, type 0.3 and from the Seed frame, 
select the item State and set the value to 0. Next, click the Generate button.
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The synthesized signal exhibits a locally highly irregular behavior.

3 Now let us try another value for the fractal index. From the Fractal Index 
edit button, type 0.7 and from the Seed frame, select the item State and set 
the value to 0. Next, click the Generate button.
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The synthesized signal clearly exhibits a stronger low-frequency component 
and has locally a less irregular behavior. These properties can be 
investigated by clicking the Statistics button.

Saving the Synthesized Signal
The Fractional Brownian Motion Synthesis Tool lets you save the synthesized 
signal to disk. The toolbox creates a MAT-file in the current directory with a 
name you choose.

To save the synthesized signal from the present selection, use the option 
File⇒Save Synthesized Signal. A dialog box appears that lets you specify a 
directory and filename for storing the signal. After saving the signal data to the 
file fbm07.mat, load the variables into workspace.

load fbm07
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whos

FBM_PARAMS

FBM_PARAMS = 

          SEED: [2x1 double]
           Wav: 'db10'
        Length: 1000
             H: 0.7000
    Refinement: 6

The synthesized signal is given by fbm07. In addition, the parameters of the 
generation are given by FBM_PARAMS, which is a cell array of length 5.

Name Size Bytes Class

FBM_PARAMS 1x1 668 struct array 

fbm07 1x1000 8000 double array 
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New Wavelet for CWT
This section takes you through the features of New Wavelet for CWT, one of the 
Wavelet Toolbox™ specialized tools. 

The toolbox requires only one function to design a new wavelet adapted to a 
given pattern for CWT: pat2cwav. You’ll find full information about this 
function in its reference page.

In this section, you’ll learn how to

• Load a pattern

• Synthesize a new wavelet adapted to the given pattern

• Detect patterns by CWT using the adapted wavelet

• Compare the detection using both the adapted wavelet and well-known 
wavelets

• Save the synthesized wavelet

Since you can perform the design of the new wavelet for CWT either from the 
command line or using the graphical interface tools, this section has 
subsections covering each method.

The principle for designing a new wavelet for CWT is to approximate a given 
pattern using least squares optimization under constraints leading to an 
admissible wavelet well suited for the pattern detection using the continuous 
wavelet transform (see [MisMOP03] in “References” on page 6-152).

New Wavelet for CWT Using the Command Line
The following example illustrates how to generate a new wavelet starting from 
a pattern.

% Load original pattern: a pseudo sine one.
load ptpssin1; 

% Variables X and Y contain the pattern.
whos
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% This example is a demo-example, so we have the value of the
% integral of the pattern as well as the details about its
% construction in the caption variable.

IntVAL

IntVAL =

    0.1592

% The pattern defined on the interval [0,1] is of integral 0.1592. 
% So it is not a wavelet but it is a good candidate since it 
% oscillates like a wavelet.
plot(X,Y), title('Original Pattern')

Name Size Bytes Class

IntVAL 1x1 8 double array 

X 1x256 2048 double array 

Y 1x256 2048 double array 

caption 1x35 70 char array
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% To synthesize a new wavelet adapted to the given pattern, let
% us use a least squares polynomial approximation of degree 6 with
% constraints of continuity at the beginning and the end of the
% pattern.
[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;

% The new wavelet is given by xval and nc*psi.
plot(X,Y,'-',xval,nc*psi,'--'), 
title('Original Pattern and Adapted Wavelet (dashed line)')

% Let us notice that the version of the wavelet correctly 
% defined in order to be used in the CWT algorithm must be of
% square norm equal to 1. It is simply given by xval and psi.

New Wavelet for CWT Using the Graphical Interface

1 Start the New Wavelet for CWT Tool.

From the MATLAB® prompt, type

wavemenu

The Wavelet Toolbox Main Menu appears. Click the New Wavelet for 
CWT menu item to display the Pattern Adapted Admissible Wavelet Design 
Tool.
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.

2 Load the original pattern.

The MAT-file defining the pattern can contain more than one variable. In 
that case, the variable Y is considered if it exists; otherwise, the first variable 
is considered.

3 From the File menu, choose the Load Pattern option. 

When the Load Pattern dialog box appears, select the demo MAT-file 
ptpssin1.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.
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The selected pattern denoted by F is defined on the interval [0,1] and is of 
integral 0.1592. It is not a wavelet, but it is a good candidate because it 
oscillates like a wavelet.

4 Perform pattern approximation.

Accept the default parameters leading to use a polynomial of degree 3 with 
constraints of continuity at the borders 0 and 1, to approximate the pattern 
F. Click the Approximate button. 

After a pause for computation, the tool displays the new wavelet in green 
superimposed with the original pattern in red.



2 Using Wavelets

2-222

The result is not really satisfactory. A solution is to increase the polynomial 
degree to fit better the pattern.

5 Using the Polynomial Degree menu, increase the degree by selecting 6. 
Then click the Approximate button again.
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The result is now of good quality and can be used for pattern detection.

6 Pattern detection using the new wavelet.

Click the Run button. 

After a pause for computation, the tool displays the running signal and the 
pattern detection by CWT using the adapted wavelet.
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The running signal is the superimposition of two dilated and translated 
versions of the pattern F, namely F((t-20)/8) and F((t-40)/4). The two 
pairs (position, scale) to be detected are given by (20,8) and (40,4) and are 
materialized by dashed lines in the lower right graph of the contour plot of 
the CWT. The detection is perfect because the two local maxima of the 
absolute values of the continuous wavelet coefficients fit perfectly.

7 Using the Running signal frame, select the Noise check box to add an 
additive noise to the previous signal. Click the Run button again.
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The quality of the detection is not altered at all.

8 Compare the adapted wavelet and well-known wavelets.

Let us now compare the performance for pattern detection of the adapted 
wavelet versus well-known wavelets. Click the Compare button. A new 
window appears.
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This tool displays the pattern detection performed with the adapted wavelet 
on the left and db1 wavelet (default) on the right. The two positions are 
perfectly detected in both cases but scales are slightly underestimated by 
the db1 wavelet.

The tool allows you to generate various running signals and choose the 
wavelet to be compared with the adapted one.

Click the Close button to get back to the main window.
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Saving the New Wavelet
The New Wavelet for CWT Tool lets you save the synthesized wavelet. The 
toolbox creates a MAT-file in the current directory with a name you choose.

To save the new wavelet from the present selection, use the option File⇒Save 
Adapted Wavelet. A dialog box appears that lets you specify a directory and 
filename for storing the data. After you save the wavelet data to the file 
newwavel.mat, the adapted wavelet is given by X and Y.

Note that the version of the saved wavelet is correctly defined to be used in the 
CWT algorithm and is such that its square norm is equal to 1.
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Multivariate Wavelet De-noising
This section demonstrates the features of multivariate de-noising provided in 
the Wavelet Toolbox™ software. The toolbox includes the wmulden function and 
a graphical user interface (GUI) tool available from wavemenu. This section also 
describes the command-line and GUI methods and includes information about 
transferring signal and parameter information between the disk and the GUI.

This multivariate wavelet de-noising problem deals with models of the form 
X(t) = F(t) + e(t), where the observation X is p-dimensional, F is the 
deterministic signal to be recovered, and e is a spatially correlated noise signal. 
This kind of model is well suited for situations for which such additive, 
spatially correlated noise is realistic.

Multivariate Wavelet De-noising Using the 
Command Line
This example uses noisy test signals. In this section, you will

• Load a multivariate signal. 

• Display the original and observed signals. 

• Remove noise by a simple multivariate thresholding after a change of basis.

• Display the original and de-noised signals. 

• Improve the obtained result by retaining less principal components.

• Display the number of retained principal components.

• Display the estimated noise covariance matrix.

1 Load a multivariate signal by typing the following at the MATLAB® prompt:

load ex4mwden
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Usually, only the matrix of data x is available. Here, we also have the true 
noise covariance matrix (covar) and the original signals (x_orig). These 
signals are noisy versions of simple combinations of the two original signals. 
The first one is “Blocks” which is irregular, and the second is “HeavySine,” 
which is regular except around time 750. The other two signals are the sum 
and the difference of the two original signals. Multivariate Gaussian white 
noise exhibiting strong spatial correlation is added to the resulting four 
signals, which leads to the observed data stored in x.

2 Display the original and observed signals by typing 

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x_orig(:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x(:,i)); 
    title(['Observed signal ',num2str(i)])
    kp = kp + 2;
end

Name Size Bytes Class

covar 4x4 128 double array 

x 1024x4 32768 double array 

x_orig 1024x4 32768 double array
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The true noise covariance matrix is given by

covar

covar =
    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

3 Remove noise by simple multivariate thresholding.

The de-noising strategy combines univariate wavelet de-noising in the basis 
where the estimated noise covariance matrix is diagonal with noncentered 
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Principal Component Analysis (PCA) on approximations in the wavelet 
domain or with final PCA.

First, perform univariate de-noising by typing the following to set the 
de-noising parameters:

level = 5;
wname = 'sym4';
tptr = 'sqtwolog';
sorh = 's';

Then, set the PCA parameters by retaining all the principal components:

npc_app = 4;
npc_fin = 4;

Finally, perform multivariate de-noising by typing

x_den = wmulden(x, level, wname, npc_app, npc_fin, tptr, sorh);

4 Display the original and de-noised signals by typing

kp = 0;
for i = 1:4 
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); 
    title(['Observed signal ',num2str(i)])
    subplot(4,3,kp+3), plot(x_den(:,i)); 
    title(['De-noised signal ',num2str(i)])
    kp = kp + 3;
end
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5 Improve the first result by retaining fewer principal components.

The results are satisfactory. Focusing on the two first signals, note that they 
are correctly recovered, but the result can be improved by taking advantage 
of the relationships between the signals, leading to an additional de-noising 
effect.

To automatically select the numbers of retained principal components by 
Kaiser’s rule (which keeps the components associated with eigenvalues 
exceeding the mean of all eigenvalues), type

npc_app = 'kais';
npc_fin = 'kais';

Perform multivariate de-noising again by typing

[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ...
npc_fin, tptr, sorh);
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6 Display the number of retained principal components.

The second output argument gives the numbers of retained principal 
components for PCA for approximations and for final PCA.

npc

npc =
2     2

As expected, since the signals are combinations of two initial ones, Kaiser’s 
rule automatically detects that only two principal components are of 
interest.

7 Display the estimated noise covariance matrix.

The third output argument contains the estimated noise covariance matrix:

nestco

nestco =
1.0784    0.8333    0.6878    0.8141

    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

As you can see by comparing with the true matrix covar given previously, 
the estimation is satisfactory.

8 Display the original and final de-noised signals by typing 

kp = 0;
for i = 1:4 
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); 
    title(['Observed signal ',num2str(i)])
    subplot(4,3,kp+3), plot(x_den(:,i)); 
    title(['De-noised signal ',num2str(i)])
    kp = kp + 3;
end
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The results are better than those previously obtained. The first signal, 
which is irregular, is still correctly recovered, while the second signal, which 
is more regular, is de-noised better after this second stage of PCA.

Multivariate Wavelet De-noising Using the 
Graphical Interface
This section explores a de-noising strategy for multivariate signals using the 
graphical interface tools. 

1 Start the Multivariate De-noising Tool by first opening the Wavelet 
Toolbox Main Menu.

wavemenu
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2 Click Multivariate Denoising to open the Multivariate De-Noising GUI.
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3 Load data. 

Select File > Load Signals. In the Select dialg box, select the MAT-file 
ex4mwden.mat from the MATLAB directory toolbox/wavelet/wmultsig1d.

Click Open to load the noisy multivariate signal into the GUI. The signal is 
a matrix containing four columns, where each column is a signal to be 
de-noised.

These signals are noisy versions from simple combinations of the two 
original signals. The first one is “Blocks” which is irregular and the second 
is “HeavySine” which is regular except around time 750. The other two 
signals are the sum and the difference between the original signals. 
Multivariate Gaussian white noise exhibiting strong spatial correlation is 
added to the resulting four signals.

The following example illustrates the two different aspects of the proposed 
de-noising method. First, perform a convenient change of basis to cope with 
spatial correlation and de-noise in the new basis. Then, use PCA to take 
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advantage of the relationships between the signals, leading to an additional 
de-noising effect.

4 Perform a wavelet decomposition and diagonalize the noise covariance 
matrix.

Use the displayed default values for the Wavelet, the DWT Extension 
Mode, and the decomposition Level, and then click Decompose and 
Diagonalize. The tool displays the wavelet approximation and detail 
coefficients of the decomposition of each signal in the original basis.
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Select Noise Adapted Basis to display the signals and their coefficients in 
the noise-adapted basis.

To see more information about this new basis, click More on Noise 
Adapted Basis. A new figure displays the robust noise covariance estimate 
matrix and the corresponding eigenvectors and eigenvalues. 
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Eigenvectors define the change of basis, and eigenvalues are the variances 
of uncorrelated noises in the new basis. 

The multivariate de-noising method proposed below is interesting if the 
noise covariance matrix is far from diagonal exhibiting spatial correlation, 
which, in this example, is the case. 

5 De-noise the multivariate signal. 

A number of options are available for fine-tuning the de-noising algorithm. 
However, we will use the defaults: fixed form soft thresholding, scaled white 
noise model, and the proposed numbers of retained principal components. In 
this case, the default values for PCA lead to retaining all the components.

Select Original Basis to return to the original basis and then click 
De-noise.
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The results are satisfactory. Both of the two first signals are correctly 
recovered, but they can be improved by getting more information about the 
principal components. Click More on Principal Components. 



2 Using Wavelets

2-242

A new figure displays information to select the numbers of components to 
keep for the PCA of approximations and for the final PCA after getting back 
to the original basis. You can see the percentages of variability explained by 
each principal component and the corresponding cumulative plot. Here, it is 
clear that only two principal components are of interest.

Close the More on Principal Components window. Select 2 as the Nb. of 
PC for APP. Select 2 as the Nb. of PC for final PCA, and then click 
De-noise.
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The results are better than those previously obtained. The first signal, 
which is irregular, is still correctly recovered. The second signal, which is 
more regular, is de-noised better after this second stage of PCA. You can get 
more information by clicking Residuals.
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Importing and Exporting from the GUI
The tool lets you save de-noised signals to disk by creating a MAT-file in the 
current directory with a name of your choice. 

To save the signal de-noised in the previous section, 

1 Select File > Save De-Noised Signals.

2 Select Save De-Noised Signals and Parameters. A dialog box appears that 
lets you specify a directory and filename for storing the signal.

3 Type the name s_ex4mwden and click OK to save the data.

4 Load the variables into your workspace: 

load s_ex4mwdent
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whos

The de-noised signals are in matrix x. The parameters (PCA_Params and 
DEN_Params) of the two-stage de-noising process are also available. 

• PCA_Params are the change of basis and PCA parameters:
PCA_Params

PCA_Params = 
    NEST: {[4x4 double]  [4x1 double]  [4x4 double]}
     APP: {[4x4 double]  [4x1 double]  [2]}
     FIN: {[4x4 double]  [4x1 double]  [2]}

PCA_Params.NEST{1} contains the change of basis matrix. 
PCA_Params.NEST{2} contains the eigenvalues, and PCA_Params.NEST{3} is 
the estimated noise covariance matrix.

PCA_Params.APP{1} contains the change of basis matrix, PCA_Params.APP{2} 
contains the eigenvalues, and PCA_Params.APP{3} is the number of retained 
principal components for approximations.

The same structure is used for PCA_Params.FIN for the final PCA.

• DEN_Params are the de-noising parameters in the diagonal basis:

DEN_Params

DEN_Params = 

     thrVAL: [4.8445 2.0024 1.1536 1.3957 0]
    thrMETH: 'sqtwolog'
    thrTYPE: 's'

Name Size Bytes Class

DEN_Params 1x1 430 struct array 

PCA_Params 1x1 1536 struct array 

x 1024x4 32768 double array
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The thresholds are encoded in thrVAL. For j from 1 to 5, thrVAL(j) contains 
the value used to threshold the detail coefficients at level j. The thresholding 
method is given by thrMETH and the thresholding mode is given by thrTYPE.
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Multiscale Principal Components Analysis
This section demonstrates the features of multiscale principal components 
analysis provided in the Wavelet Toolbox™ software. The toolbox includes the 
wmspca function and a graphical user interface (GUI) available from wavemenu. 
This section describes the command-line and GUI methods, and information 
about transferring signal and parameter information between the disk and the 
GUI.

The aim of multiscale PCA is to reconstruct, starting from a multivariate signal 
and using a simple representation at each resolution level, a simplified 
multivariate signal. The multiscale principal components generalizes the 
normal PCA of a multivariate signal represented as a matrix by performing a 
PCA on the matrices of details of different levels simultaneously. A PCA is also 
performed on the coarser approximation coefficients matrix in the wavelet 
domain as well as on the final reconstructed matrix. By selecting the numbers 
of retained principal components, interesting simplified signals can be 
reconstructed.

For a more detailed introduction and use of multiscale PCA for Statistical 
Process Control see the paper written by B. Bakshi (see [Bak95] in “References” 
on page 6-152).

Since you can perform multiscale PCA either from the command line or using 
the GUI, this section has subsections covering each method. 

Multiscale Principal Components Analysis Using the 
Command Line
This example uses noisy test signals. In this section, you will:

• Load a multivariate signal. 

• Perform a simple multiscale PCA.

• Display the original and simplified signals. 

• Improve the obtained result by retaining less principal components.

1 Load a multivariate signal by typing at the MATLAB® prompt:

load ex4mwden
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The data stored in matrix x comes from two test signals, Blocks and 
HeavySine, and from their sum and difference, to which multivariate 
Gaussian white noise has been added.

2 Perform a simple multiscale PCA.

The multiscale PCA combines noncentered PCA on approximations and 
details in the wavelet domain and a final PCA. At each level, the most 
significant principal components are selected.

First, set the wavelet parameters:

level = 5;
wname = 'sym4';

Then, automatically select the number of retained principal components 
using Kaiser’s rule by typing

npc = 'kais';

Finally, perform multiscale PCA:

[x_sim, qual, npc] = wmspca(x ,level, wname, npc); 

Name Size Bytes Class

covar 4x4 128 double array 

x 1024x4 32768 double array

x_orig 1024x4 32768 double array
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3 Display the original and simplified signals:

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); 
    title(['Simplified signal ',num2str(i)])
    kp = kp + 2;
end

The results from a compression perspective are good. The percentages 
reflecting the quality of column reconstructions given by the relative mean 
square errors are close to 100%.

qual

qual =

   98.0545   93.2807   97.1172   98.8603
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4 Improve the first result by retaining fewer principal components.

The results can be improved by suppressing noise, because the details at 
levels 1 to 3 are composed essentially of noise with small contributions from 
the signal. Removing the noise leads to a crude, but large, denoising effect.

The output argument npc contains the numbers of retained principal 
components selected by Kaiser’s rule:

npc

npc =
     1     1     1     1     1     2     2

For d from 1 to 5, npc(d) is the number of retained noncentered principal 
components (PCs) for details at level d. The number of retained noncentered 
PCs for approximations at level 5 is npc(6), and npc(7) is the number of 
retained PCs for final PCA after wavelet reconstruction. As expected, the 
rule keeps two principal components, both for the PCA approximations and 
the final PCA, but one principal component is kept for details at each level.

To suppress the details at levels 1 to 3, update the npc argument as follows:

npc(1:3) = zeros(1,3);

npc

npc =
0     0     0     1     1     2     2

Then, perform multiscale PCA again:

[x_sim, qual, npc] = wmspca(x, level, wname, npc); 

5 Display the original and final simplified signals:

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); 
    title(['Simplified signal ',num2str(i)])
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    kp = kp + 2;
end

As shown, the results are improved.

Multiscale Principal Components Analysis Using the 
Graphical Interface
This section explores multiscale PCA using the GUIs. 

1 Start the Multiscale Princ. Comp. Analysis tool by first opening the Wavelet 
Toolbox Main Menu:

wavemenu
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2 Click Multiscale Princ. Comp. Analysis to open the Multiscale Principal 
Components Analysis GUI.

3 Load data. 

Select File > Load Signals. In the Select dialog box, select the MAT-file 
ex4mwden.mat from the MATLAB directory toolbox/wavelet/wmultsig1d.

Click Open to load the multivariate signal into the GUI. The signal is a 
matrix containing four columns, where each column is a signal to be 
simplified.
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These signals are noisy versions from simple combinations of the two 
original signals, Blocks and HeavySine and their sum and difference, each 
with added multivariate Gaussian white noise. 

4 Perform a wavelet decomposition and diagonalize each coefficients matrix.

Use the default values for the Wavelet, the DWT Extension Mode, and the 
decomposition Level, and then click Decompose and Diagonalize. The 
tool displays the wavelet approximation and detail coefficients of the 
decomposition of each signal in the original basis.
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To get more information about the new bases allowed for performing a PCA 
for each scale, click More on Adapted Basis. A new figure displays the 
corresponding eigenvectors and eigenvalues for the matrix of the detail 
coefficients at level 1. 
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You can change the level or select the coarser approximations or the 
reconstructed matrix to investigate the different bases. When you finish, 
click Close.

5 Perform a simple multiscale PCA. 

The initial values for PCA lead to retaining all the components. Select 
Kaiser from the Provide default using drop-down list, and click Apply.
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The results are good from a compression perspective. 

6 Improve the obtained result by retaining fewer principal components.

The results can be improved by suppressing the noise, because the details at 
levels 1 to 3 are composed essentially of noise with small contributions from 
the signal, as you can see by careful inspection of the detail coefficients. 
Removing the noise leads to a crude, but large, de-noising effect.

For D1, D2 and D3, select 0 as the Nb. of non-centered PC and click 
Apply.



2 Using Wavelets

2-258

The results are better than those previously obtained. The first signal, 
which is irregular, is still correctly recovered, while the second signal, which 
is more regular, is de-noised better after this second stage of PCA. You can 
get more information by clicking Residuals.
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Importing and Exporting from the GUI
The Multiscale Principal Components Analysis tool lets you save the simplified 
signals to disk. The toolbox creates a MAT-file in the current directory with a 
name of your choice. 

To save the simplified signals from the previous section:

1 Select File > Save Simplified Signals.

2 Select Save Simplified Signals and Parameters. A dialog box appears that 
lets you specify a directory and file name for storing the signal.

3 Type the name s_ex4mwden and click OK to save the data.

4 Load the variables into your workspace: 

load s_ex4mwden
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whos

The simplified signals are in matrix x. The parameters of multiscale PCA 
are available in PCA_Params:

PCA_Params

PCA_Params = 
1x7 struct array with fields:
    pc
    variances
    npc

PCA_Params is a structure array of length d+2 (here, the maximum 
decomposition level d=5) such that PCA_Params(d).pc is the matrix of principal 
components. The columns are stored in descending order of the variances. 
PCA_Params(d).variances is the principal component variances vector, and 
PCA_Params(d).npc is the vector of selected numbers of retained principal 
components.

Name Size Bytes Class

PCA_Params 1x7 2628 struct array 

x 1024x4 32768 double array
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One-Dimensional Multisignal Analysis
This section takes you through the features of one-dimensional multisignal 
wavelet analysis, compression and denoising using the Wavelet Toolbox™ 
software. The rationale for each topic is the same as in the 1-D single signal 
case (see Chapter 6, “Advanced Concepts” for more information).

The toolbox provides the following functions for multisignal analysis.

Analysis-Decomposition and Synthesis-Reconstruction Functions

Decomposition Structure Utilities

Function Name Purpose

mdwtdec Multisignal wavelet decomposition

mdwtrec Multisignal wavelet reconstruction and 
extraction of approximation and detail 
coefficients

Function Name Purpose

chgwdeccfs Change multisignal 1-D decomposition 
coefficients

wdcenergy Multisignal 1-D decomposition energy 
repartition
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Compression and Denoising Functions

You can perform analyses from the MATLAB® command line or by using the 
graphical interface tools. This section describes each method. The last section 
discusses how to exchange signal and coefficient information between the disk 
and the graphical tools.

One-Dimensional Multisignal Analysis Using 
Command Line

1 Load a file, from the MATLAB prompt, by typing

load thinker

The file thinker.mat contains a single variable X. Use whos to show 
information about X. 

whos 

Function Name Purpose

mswcmp Multisignal 1-D compression using wavelets

mswcmpscr Multisignal 1-D wavelet compression scores

mswcmptp Multisignal 1-D compression thresholds and 
performance

mswden Multisignal 1-D denoising using wavelets

mswthresh Perform multisignal 1-D thresholding

Name Size Bytes Class

X 192x96 147456 double array 
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2 Plot some signals.

figure; 
plot(X(1:5,:)','r');   hold on
plot(X(21:25,:)','b'); plot(X(31:35,:)','g')
set(gca,'Xlim',[1,96])
grid

3 Perform a wavelet decomposition of signals at level 2 of row signals using 
the db2 wavelet.
dec = mdwtdec('r',X,2,'db2')

This generates the decomposition structure dec:

dec = 

        dirDec: 'r'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x26 double]
            cd: {[192x49 double]  [192x26 double]}
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4 Change wavelet coefficients.

For each signal change the wavelet coefficients by setting all the coefficients 
of the detail of level 1 to zero.

decBIS = chgwdeccfs(dec,'cd',0,1);

This generates a new decomposition structure decBIS.

5 Perform a wavelet reconstruction of signals and plot some of the new 
signals.

Xbis = mdwtrec(decBIS);
figure; 
plot(Xbis(1:5,:)','r');   hold on
plot(Xbis(21:25,:)','b'); plot(Xbis(31:35,:)','g')
grid; set(gca,'Xlim',[1,96])

Compare old and new signals by plotting them together.

figure; idxSIG = [1 31];
plot(X(idxSIG,:)','r','linewidth',2);   hold on
plot(Xbis(idxSIG,:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
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6 Set the wavelet coefficients at level 1 and 2 for signals 31 to 35 to the value 
zero, perform a wavelet reconstruction of signal 31, and compare some of the 
old and new signals.

decTER = chgwdeccfs(dec,'cd',0,1:2,31:35);
Y = mdwtrec(decTER,'a',0,31);
figure;
plot(X([1 31],:)','r','linewidth',2);   hold on
plot([Xbis(1,:) ; Y]','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
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7 Compute the energy of signals and the percentage of energy for wavelet 
components.

[E,PEC,PECFS] = wdecenergy(dec);

Energy of signals 1 and 31:

Ener_1_31 = E([1 31])
Ener_1_31 =

  1.0e+006 *

    3.7534
    2.2411

8 Compute the percentage of energy for wavelet components of signals 1 and 
31.

PEC_1_31 = PEC([1 31],:)

PEC_1_31 =
   99.7760    0.1718    0.0522

99.3850    0.2926    0.3225
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The first column shows the percentage of energy for approximations at level 
2. Columns 2 and 3 show the percentage of energy for details at level 2 and 
1, respectively.

9 Display the percentage of energy for wavelet coefficients of signals 1 and 31. 
As we can see in the dec structure, there are 26 coefficients for the 
approximation and the detail at level 2, and 49 coefficients for the detail at 
level 1.

PECFS_1 = PECFS(1,:); PECFS_31 = PECFS(31,:);
figure;
plot(PECFS_1,'r','linewidth',2); hold on
plot(PECFS_31,'b','linewidth',2);
grid; set(gca,'Xlim',[1,size(PECFS,2)])

10 Compress the signals to obtain a percentage of zeros near 95% for the 
wavelet coefficients.

[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);
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Plot the original signals 1 and 31, and the corresponding compressed 
signals.

figure;
plot(X([1 31],:)','r','linewidth',2);   hold on
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])

Compute thresholds, percentage of energy preserved and percentage of zeros 
associated with the L2_perf method preserving at least 95% of energy.

[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'L2_perf',95);
idxSIG = [1,31];

Thr   = THR_VAL(idxSIG)
Thr =
  256.1914
  158.6085

L2per = L2_Perf(idxSIG)
L2per =
   96.5488
   94.7197
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N0per = N0_Perf(idxSIG)
N0per =
   79.2079
   86.1386

Compress the signals to obtain a percentage of zeros near 60% for the 
wavelet coefficients.

[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',60);

XC signals are the compressed versions of the original signals in the row 
direction.

Compress the XC signals in the column direction 

XX = mswcmp('cmpsig','c',XC,'db2',2,'N0_perf',60);

Plot original signals X and the compressed signals XX as images.

figure;
subplot(1,2,1); image(X)
subplot(1,2,2); image(XX)
colormap(pink(222))
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11 Denoise the signals using the universal threshold:

[XD,decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln');
figure;
plot(X([1 31],:)','r','linewidth',2);   hold on
plot(XD([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])

XD signals are the denoised versions of the original signals in the row 
direction.

Denoise the XD signals in column direction 

XX = mswden('densig','c',XD,'db2',2,'sqtwolog','sln');

Plot original signals X and the denoised signals XX as images.

figure;
subplot(1,2,1); image(X)
subplot(1,2,2); image(XX)
colormap(pink(222))
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One-Dimensional Multisignal Analysis Using the 
Graphical Interface
In this section, we explore the same signal as in the previous section, but use 
the graphical interface tools to analyze it.

1 Start the Wavelet 1-D Multisignal Analysis Tool

From the MATLAB prompt, type:

wavemenu

The Wavelet Toolbox Main Menu appears.
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Click Multisignal Analysis 1-D to open the Wavelet 1-D Multisignal 
Analysis tool.
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.

The tool is divided into five panels. Two of them are the same as in all 
Wavelet Toolbox GUIs: the Command Frame on the right side of the figure 
and the Dynamic Visualization tool at the bottom. The Command Frame 
contains a special component found in all multisignal tools: the Selection of 
Data Sets panel which is used to manage two lists. 

The three new panels are the Visualization of Selected Data panel, the 
Information on Selected Data panel, and the Selection of Data panel.

2 Load the signals

From the File menu, select Load > Signals. When the Load Signal dialog 
box appears, select the demo MAT-file thinker.mat from the MATLAB 
directory toolbox/wavelet/wmultisig1d and click OK.

The data matrix loadsin the Wavelet 1-D Multisignal Analysis tool, and the 
first signal displays.
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The Selection of Data panel contains a list of selectable signals. At the 
beginning, only the originally loaded signals are available. You can generate 
and add new signals to the list by decomposing, compressing, or denoising 
original signals.

Each row of the list displays the index of selectable signal (Idx Sel), the  
index of original signal (Idx Sig) and three wavelet transform attributes 
describing the process used to obtain the selectable signal from the original 
one.

3 View the signals and signal information

With signal 1 highlighted, Shift-click the mouse on signal 3 to select signals 
1, 2, and 3. 

Ctrl-click the mouse on signals 7, 9, and 11. (The Select ALL button at the 
bottom of the Selection of Data panel selects all signals and the Clear 
button deselects all signals.)

The selected signals (1, 2, 3, 7, 9 and 11) display in the Visualization of 
Selected Data panel. The Information on Selected Data panel contains 
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the box plots of the minimums, the means, and the maximums of these 
signals.

4 Highlight a signal

Using the Highlight Sel button in the lower left corner of the Visualization 
of Selected Data panel, select signal 3.
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5 Select Different Views

In the Visualization of Selected Data panel, change the view mode using 
the popup in the lower right corner. Choose Separate Mode. The selected 
signals display.

6 Decompose a multisignal

Perform an analysis at level 4 using the db2 wavelet and the same file used 
in the command line section: thinker.mat. 

In the upper right portion of the Wavelet 1-D Multisignal Analysis tool, 
select db2 and level 4 in the Wavelet fields.
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Click Decompose. After a pause for computation, all the original signals are 
decomposed and signal 1 is automatically selected

.

In the Selection of Data panel, new information is added for each original 
signal—the percentage of energy of the wavelet components (D1,…,D4 and 
A4) and the total energy. The Information on Selected Data panel contains 
information on the single selected signal: Min, Mean, Max and the energy 
distribution of the signal.
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Since the original signals are decomposed, new objects appear and the 
Selection of Data Sets panel in the Command Frame updates. 

The Selection of Data Sets panel defines the available signals that are now 
selectable from the Selection of Data panel.

The list on the left allows you to select sets of signals and the right list allows 
you to select sets of corresponding coefficients: original signals (Orig. 
Signals), approximations (APP 1,...) and details from levels 1 to 4 (DET 1,...). 

In the list on the right, the coefficients vectors can be of different lengths, 
but only components of the same length can be selected together.

After a decomposition the original signals (Orig. Signals) data set appears 
automatically selected.

Select signals 1, 2, 3, 7, 9 and 11.
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The energy of  selected signals is primarily concentrated in the 
approximation A4, so the box plot is crushed (see figure below on the left). 
Deselect App. On/Off to see a better representation of details energy (see 
figure below on the right).

7 Display multisignal decompositions

In the Visualization of Selected Data panel change the view mode using 
the popup below the plots and select Full Dec Mode. The decompositions of 
the selected signals display.
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Change the Level to 2. 

Select the signal 7 in Highlight Sel.



One-Dimensional Multisignal Analysis

2-281

8 Change the visualization modes

Using the second popup from the left at the bottom of the panel, select 
Full Dec Mode (Cfs). The coefficients of the decompositions of the selected 
signals display. At level k, coefficients are duplicated 2k times.

Change the view mode to Stem Mode (Abs), and then, change to Tree Mode. 
The wavelet tree corresponding to the decompositions of the selected signals 
displays. 

Select the level 4 and click the node a3. Then highlight signal 7.

9 Select Different Wavelet Components

Ctrl-click on Orig. Signals, APP 1, APP 3 and DET 1 to select these four 
sets of signals from the list on the left in the Selection of Data Sets panel.

The total number of selected data (Number of Sig.) displays in the Selection 
of Data Sets panel: four sets of 192 signals each is a total of 768 signals.
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Click the Asc. button in the Sort panel. The selected data are sorted in 
ascending order with respect to the Idx Sig parameter

.

Note that DWT attributes of each selectable signal have been updated where 
a stands for approximation, d for detail and s for signal.

Click the Idx Sel 1 signal and then shift-click the Idx Sel 579 signal. 
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Choose Separate Mode.

Ctrl-click to select two sets of signals from the right-most list of the 
Selection of Data Sets panel: APP 1 and DET 1.



2 Using Wavelets

2-284

Note that in this list of coefficients sets, the selected vectors must be of same 
length, which means that you must select components of the same level.

Click the Asc. button in the Sort panel. The selected data are sorted in 
ascending order with respect to Idx Sig parameter. 

Select the ten first signals.
.
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10 Compress a multisignal

The graphical interface tools feature a compression option with automatic or 
manual thresholding.

Cick Compress, located in the lower right side of the window. This displays 
the Compression window.

Note  The tool always compresses all the original signals when you click the 
Compress button. 

Before compressing, choose the particular strategy for computing the 
thresholds. Select the adapted parameters in the Select Compression 
Method frame. Then, apply this strategy to compute the thresholds 
according to the current method, either to the current selected signals by 
clicking the Selected button, or to all signals by clicking the ALL button. For 
this example, accept the defaults and click the ALL button.
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The thresholds for each level (ThrD1, … , ThrD4), the energy ratio (En. Rat.) 
and the sparsity ratio (NbZ Rat.) are displayed in the Selection of Data 
panel.

Click the Compress button at the bottom of the Thresholding panel. Now 
you can select new data sets: compressed Signals, the corresponding 
approximations, details and coefficients. 

Press the Ctrl key and click the Compressed item in the left list of the 
Selection of Data Sets panel. The original signals and their compressed 
versions are selected (2 x 192 = 384 signals).

Click the Asc. button at the bottom of the Selection of  Data panel to sort 
the signals using Idx Sig number. 

With the mouse, select the first four signals. They correspond to the original 
signals 1, 2 and the corresponding compressed signals 193, 194.
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Click the Close button to close the Compression window.

11 Denoise a multisignal

The graphical user interface offers a denoising option with either a 
predefined thresholding strategy or a manual thresholding method. Using 
this tool makes very easy to remove noise from many signals in one step.

Display the Denoising window by clicking the Denoise button located in the 
bottom part of the Command Frame on the right of the window.



2 Using Wavelets

2-288

A number of options are available for fine-tuning the denoising algorithm. 
For this example, accept the defaults: soft type of thresholding, Fixed form 
threshold method, and Scaled white noise as noise structure.

Click the ALL button in the Thresholding panel. The threshold for each level 
(ThrD1, … , ThrD4) computes and displays in the Selection of Data panel.

Then click the Denoise button at the bottom of the Thresholding panel.
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Ctrl-click the Denoised item in the list on the left of the Selection of Data 
Sets panel. The original signals and the corresponding denoised ones are 
selected (2 x 192 = 384 signals).

Click the Asc. button at the bottom of the Selection of  Data panel to sort the 
signals according to the Idx Sig parameter.

With the mouse, select the first four signals. They correspond to the original 
signals 1, 2 and the corresponding denoised signals 193, 194

.

Choose Separate Mode.
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12 To view residuals, Ctrl-click the Orig. Signal, the Denoised and the 
Residuals items in the list on the left of the Selection of Data Sets panel. 
Original, denoised and residual signals are selected (3 x 192 = 576 signals).

Click the Asc. button at the bottom of the Selection of  Data panel to sort 
the signals using the Idx Sig parmeter.

With the mouse, select the first six signals. They correspond to the original 
signals 1, 2, the corresponding denoised signals 193, 194 and the residuals 
385, 386.

Then, choose Separate Mode.
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13 Click Close to close the denoising tool. Then, click the Yes button to update 
the synthesized signals.

Manual Threshold Tuning

1 Choose a method, select one or several signals in the Selection of Data 
panel using the mouse and keys. Then click the Selected button. You can 
select another group of signals using the same method. Press the Denoise 
button to desnoise the selected signal(s).
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You can also use manual threshold tuning. Click the Enable Manual 
Thresholding Tuning button.

The horizontal lines in the wavelet coefficient axes (cd1, …, cd4) can be 
dragged using the mouse. This may be done individually, by group or all 
together depending on the values in the Select Signal and Selected Level 
fields in the Manual Threshold Tuning panel.
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2 In the Wavelet 1-D Multisignal Analysis Compression tool, you can use two 
methods for threshold tuning: the By level thresholding method which is 
used in the Wavelet 1-D Multisignal Analysis Denoising tool, and the Global 
thresholding method.

You can drag the vertical lines in the Energy and Nb. Zeros Performances 
axes using the mouse. This can be done individually or all together. 
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depending on the values of Select Signal in the Manual Threshold Tuning 
panel.

The threshold value, L2 performance, and number of zeros performance are 
updated in the corresponding edit buttons in the Manual Threshold 
Tuning panel.

Statistics on Signals

1 You can display various statistical parameters related to the signals and 
their components. From the Wavelet 1-D Multisignal Analysis tool, click the 
Statistics button. Then select the signal 1 in the Selection of Data Sets 
panel.
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Select the signals 1, 2, 3, 7, 9 and 11 in the Selection of Data panel, and 
display the corresponding boxplots and correlation plots.
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2 To display statistics on many wavelet components, in the Selection Data 
Sets panel, in the left column, select Orig. Signals, APP 1, DET 1, Denoised 
and Residuals signals. Then choose Separate Mode, and click the Asc. 
button in the Sort panel. The selected data are sorted in ascending order 
with respect to Idx Sig parameter. In the Selection of Data panel, select 
data related to signal 1.

.



One-Dimensional Multisignal Analysis

2-297

Clustering Signals

Note  To use clustering, you must have Statistics Toolbox™ software 
installed.

1 Click the Clustering button located in the Command Frame, which is in the 
lower right of the Wavelet 1-D Multisignal Analysis window to open the 
Clustering tool.

You can cluster various type of signals and wavelet components: original, 
denoised or compressed, residuals, and approximations or details 
(reconstructed or coefficients). Similarly, there are several methods for 
contructing partitions of data.
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Use the default parameters (Original and Signal in Data to Cluster, and 
in Ascending Hierarchical, euclidean, ward, and 6 in Culstering) and 
click the Compute Clusters button.

A full dendrogram and a restricted dendrogram display in the Selection by 
Dendrogram panel. For each signal, the cluster number displays in the 
Selection of Data panel.

.

2 Select one cluster, several clusters, or a part of a cluster.

Click the xticklabel 3 at the bottom of the restricted dendrogram. The 
links of the third cluster blink in the full dendrogram and the 24 signals of 
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this class display in the Visualization of Selected Data panel. You can see 
their numbers in the Selection of Data panel.

Clicking the line in the restricted or in the full dendrogram lets you select 
one cluster, several linked clusters, or a part of a cluster. For a more 
accurate selection, use the Dilate X and the Translate X sliders under the 
full dendrogram. You can also use the Yscale button located above the full 
dendrogram. The corresponding signals display in the Visualization of 
Selected Data panel and in the list of the Selection of Data panel.

You can use the horizontal line in the full dendrogram to change the number 
of clusters. Use the left mouse button to drag the line up or down.
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3 Use the Show Clusters button to examine the clusters of the current 
partition. You can display the mean (or the median) of each cluster, the 
global standard deviation and the pointwise standard deviation distance 
around the mean (or the median). The number of the cluster, the number of 
elements, the percentage of signals, and two indices of quality display for 
each cluster.

4 Click the Store Current Partition button below the Clustering panel to 
store the current partition for further comparisons. A default name is 
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suggested. Note that the 1-D Wavelet Multisignal Analysis tool stores the 
partitions and they are not saved on the disk.

.

Partitions

1 Build afnd store several partitions (for example partitions with signals, 
denoised signals approximations at level 1, 2 and 3, and denoised signals) . 
Then, click the Open Partition Manager  button below the Store Current 
Partition button. The Partitions Management panel appears. The names 
of all stored partitions are listed.

Now, you can show, clear, or save the partitions (individually, selected ones, 
or all together).
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2 To display partitions, select the Ori Signals and the Den Signals 
partitions, and click the Selected button next to the Show Partitions label. 

The clusters are almost the same, but it is difficult to see this on the 
Selected Partitions axis, due to the scaling difference. Press the Apply 
button to renumber the clusters (starting from the selected partition as basic 
numbering) to compare the two partitions.

Only three signals are not classified in the same cluster for the two 
considered partitions.
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3 Select the partitions you want to save and click the Save Partitions button 
below the Store Current Partition button in the Partitions Management 
panel.

.
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Partitions are saved as an array of integers, where each column corresponds 
to one partition and contains the indices of clusters. When you choose the 
Full Partitions option, an array object (wpartobj) is saved.

4 To load or clear stored partitions use File>Partitions in the Wavelet 1-D 
Multisignal Analysis tool. (File>Partitions is also available in the Wavelet 
1-D Multisignal Analysis Clustering tool and you can also save the current 
partition.)

To clear one or more stored partitions, select File>Partitions>Clear 
Partition.

.
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Select File>Partitions>Load Partition to load one or several partitions 
from the disk. The loaded partitions are stored in Wavelet 1-D Multisignal 
Analysis tool with any previously stored partitions. A partition can also be a 
manually created column vector.

Note  The number of signals in loaded partitions must be equal to the 
number of signals in the Wavelet 1-D Multisignal Analysis tool. A warning 
appears if this condition is not true. 

5 In each subcomponent of the Wavelet 1-D Multisignal Analysis tool (main, 
statistics, denoising, compression, clustering), you can import a stored 
partition from the list in the Selection of  Data panel. Click the Import 
Part button at the bottom of the Selection of  Data panel, the Partition Set 
Manager window appears. Select one partition and click the Import button.

.
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For this example, go back to the main window, import the Ori Signals 
partition and sort the signals in descending order with respect to A4 energy 
percentage.

6 Click the More on Partitions button at the bottom of the Partitions 
Management panel to display the Partition tool.
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7 Select the Den Signals in Sel P2 in the upper right corner of the window. 
Then, in the lower left axis, click the yellow text containing the value 2 (the 
coordinates of the corresponding point are (4,5)). The corresponding signals 
are displayed together with all related information.
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More on clustering
Instead of the Ascending Hierarchical Tree clustering method, you can use the 
K-means method. For this case, the partition cannot be represented by a 
dendrogram and other representations should be used.

In the image representation (see figure below on the left) ,you can select a 
cluster by clicking on the corresponding color on the colorbar. You can also 
select a cluster or part of a cluster by clicking on the image.

In the center representation (see figure below on the right) you can select a 
cluster by clicking on the corresponding colored center.

Importing and Exporting Information from the 
Graphical Interface
The Wavelet 1-D Multisignal Analysis tool lets you move data to and from disk.

Saving Information to Disk
You can save decompositions and denoised or compressed signals (including 
the corresponding decompositions from Wavelet 1-D Multisignal Analysis 
tools) to disk. You then can manipulate the data and later reimport it into the 
graphical tools.
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Saving Decompositions
The Wavelet 1-D Multisignal Analysis main tool lets you save the entire set of 
data from a wavelet analysis to disk. The toolbox creates a MAT-file in the 
current directory with a name you choose.

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example 
analysis by selecting File>Example>Ex 21: Thinker (rows).

2 Save the data from this analysis, using the menu option: 
File>Save Decompositions. 

A dialog box appears that lets you specify a directory and filename for 
storing the decomposition data. For this example, use the name decORI.mat.

3 Type the name decORI.

4 After saving the decomposition data to the file decORI.mat, load the 
variables into your workspace:

load decORI
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whos

Name Size Bytes Class

dec 1x1 163306 struct
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dec
dec = 
        dirDec: 'r'
         level: 4
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x8 double]
            cd: {1x4 cell}

The field ca of the structure dec gives the coefficients of approximation at 
level 4, the field cd is a cell array which contains the coefficients of details.

size(dec.cd{1})
ans =
   192    49
size(dec.cd{2})
ans =
   192    26
size(dec.cd{3})
ans =
   192    14
size(dec.cd{4})
ans =
   192     8

You can change the coefficients using the chgwdeccfs function.

Note  For a complete description of the dec structure, see “Loading 
Decompositions” on page 2-313.

Loading Information into the Wavelet 1-D Multisignal Analysis Tool
You can load signals or decompositions into the graphical interface. The 
information you load may be previously exported from the graphical interface, 
and then manipulated in the workspace; or it may be information you initially 
generated from the command line. In either case, you must observe the strict 
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file formats and data structures used by the Wavelet 1-D Multisignal Analysis 
tools or errors will occur when you try to load information.

Loading Signals. To load a signal you constructed in your MATLAB workspace 
into the Wavelet 1-D Multisignal Analysis tool, save the signal in a MAT-file 
(with extension .mat).

For example, if you design a signal called magic128 and want to analyze it in 
the Wavelet 1-D Multisignal Analysis tool, type

save magic128 magic128

Note  The workspace variable magic128 must be a matrix and the number of 
rows and columns must be greater than 1.

sizmag = size(magic128)

sizmag =
   128   128

To load this signal into the Wavelet 1-D Multisignal Analysis tool, use the 
File>Load Signal menu item. A dialog box appears in which you select the 
appropriate MAT-file to be loaded.
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Note  When you load a matrix of signals from the disk, the name of 2-D 
variables are inspected in the following order: x, X, sigDATA, and signals. 
Then, the 2-D variables encountered in the file are inspected in alphabetical 
order.

Loading Decompositions. To load decompositions that you constructed in the 
MATLAB workspace into the Wavelet 1-D Multisignal Analysis tool, save the 
signal in a MAT-file (with extension mat).

For instance, if you design a signal called magic128 and want to analyze it in 
the Wavelet 1-D Multisignal Analysis too, the structure dec must have the 
following fields:

The coefficients cA and cD{k}, for (k = 1 to dec.level), are matrices and are 
stored rowwise if dec.dirDec is equal to 'r' or columnwise if dec.dirDec is 
equal to 'c'.

'dirDec'    Direction indicator with 'r' for row or 'c' for 
column

'level'     Level of DWT decomposition

'wname'     Wavelet name

'dwtFilters' Structure with four fields: LoD, HiD, LoR, HiR

'dwtEXTM'   DWT extension mode (see dwtmode)

'dwtShift'  DWT shift parameter (0 or 1)

'dataSize' Size of original matrix X

'ca' Approximation coefficients at level dec.level

'cd' Cell array of detail coefficients, from 1 to 
dec.level
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Note  The fields 'wname' and 'dwtFilters' have to be compatible (see the 
wfilters function). The sizes of cA and cD{k}, (for k = 1 to dec.level) must 
be compatible with the direction, the level of the decomposition, and the 
extension mode.

Loading and Saving Partitions.

Loading. The Wavelet 1-D Multisignal Analysis main tool and clustering tool 
let you load a set of partitions from disk.
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Saving Partitions. The Wavelet 1-D Multisignal Analysis clustering tool lets you 
save a set of partitions to disk.

For example

1 Open the Wavelet 1-D Multisignal Analysis main tool and load the example 
analysis using File>Example>Ex 21: Thinker (rows). 

2 Click the Clustering button. The Wavelet 1-D Multisignal Analysis 
Clustering window appears. 

3 Click the Compute Clusters button, and then save the current partition 
using menu option File>Partitions>Save Current Partition. A dialog box 
appears that lets you specify the type of data to save. 

4 Press the Save Curr. button.
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5 Another dialog box appears that lets you specify a directory and filename for 
storing the partition data. Type the name curPART.

6 After saving the partition data to the file curPART.mat, load the variables 
into your workspace:

load curPART
whos

7 You can modify the array tab_IdxCLU in the workspace, and save the 
partition data in a file. For example  to create two new partitions with four 
and two clusters, type the following lines:

tab_IdxCLU(:,2) = rem((1:192)',4) + 1;
tab_IdxCLU(:,3) = double((1:192)'>96) + 1;
save newpart tab_IdxCLU

Now you can use three partitions for the example Ex 21: Thinker (rows). 
Then, you can load the partitions stored in the file newPART.mat in the 
Wavelet 1-D Multisignal Analysis main tool and clustering tool.

Name Size Bytes Class

tab_IdxCLU 192x1 1536 double
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Note  A partition is a column vector of integers. The values must vary from 1 
to NbClusters (NbClusters > 1), and each cluster must contain at least one 
element. The number of rows must be equal to the number of signals.
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3

Wavelet Applications

This chapter explores various applications of wavelets by presenting a series of sample analyses.

Introduction to Wavelet Analysis (p. 3-2) Overview of wavelet analysis

Detecting Discontinuities and Breakdown 
Points I (p. 3-3)

Using waveletes to detect discontinuites and 
breakdown points

Detecting Discontinuities and Breakdown 
Points II (p. 3-6)

More information on using waveletes to detect 
discontinuites and breakdown points

Detecting Long-Term Evolution (p. 3-8) Using wavelets to detect long-term evolution

Detecting Self-Similarity (p. 3-10) Using wavelets to detect self- similarity

Identifying Pure Frequencies (p. 3-12) Using wavelets to detect pure frequencies

Suppressing Signals (p. 3-15) Using wavelets to suppress signals

De-Noising Signals (p. 3-18) Using wavelets to remove noise from signals

De-Noising Images (p. 3-21) Using wavelets to remove noise from images

Compressing Images (p. 3-26) Using wavelets to compress images

Fast Multiplication of Large Matrices (p. 3-28) Using wavelets to perform fast multiplication of 
large matrices
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Introduction to Wavelet Analysis
Each example is followed by a discussion of the usefulness of wavelet analysis 
for the particular application area under consideration.

Use the graphical interface tools to follow along:

1 From the MATLAB® command line, type

wavemenu

2 Click on Wavelets 1-D (or another tool as appropriate).

3 Load the sample analysis by selecting the appropriate submenu item from 
File⇒Example Analysis.

Feel free to explore on your own — use the different options provided in the 
graphical interface to look at different components of the signal, to compress or 
de-noise the signal, to examine signal statistics, or to zoom in and out on 
different signal features.

If you want, try loading the corresponding MAT-file from the MATLAB 
command line, and use Wavelet Toolbox™ functions to further investigate the 
sample signals. The MAT-files are located in the directory 
toolbox/wavelet/wavedemo.

There are also other signals in the wavedemo directory that you can analyze on 
your own.
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Detecting Discontinuities and Breakdown Points I
The purpose of this example is to show how analysis by wavelets can detect the 
exact instant when a signal changes. The discontinuous signal consists of a 
slow sine wave abruptly followed by a medium sine wave.

The first- and second-level details (D1 and D2) show the discontinuity most 
clearly, because the rupture contains the high-frequency part. Note that if we 
were only interested in identifying the discontinuity, db1 would be a more 
useful wavelet to use for the analysis than db5.

The discontinuity is localized very precisely: only a small domain around     
time = 500 contains any large first- or second-level details. 
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Here is a noteworthy example of an important advantage of wavelet analysis 
over Fourier. If the same signal had been analyzed by the Fourier transform, 
we would not have been able to detect the instant when the signal’s frequency 
changed, whereas it is clearly observable here.

Details D3 and D4 contain the medium sine wave. The slow sine is clearly 
isolated in approximation A5, from which the higher-frequency information has 
been filtered.

Discussion
The deterministic part of the signal may undergo abrupt changes such as a 
jump, or a sharp change in the first or second derivative. In image processing, 
one of the major problems is edge detection, which also involves detecting 
abrupt changes. Also in this category, we find signals with very rapid 
evolutions such as transient signals in dynamic systems.

The main characteristic of these phenomena is that the change is localized in 
time or in space.

The purpose of the analysis is to determine

• The site of the change (e.g., time or position)

• The type of change (a rupture of the signal, or an abrupt change in its first 
or second derivative)

• The amplitude of the change

The local aspects of wavelet analysis are well adapted for processing this type 
of event, as the processing scales are linked to the speed of the change.

Guidelines for Detecting Discontinuities
Short wavelets are often more effective than long ones in detecting a signal 
rupture. In the initial analysis scales, the support is small enough to allow fine 
analysis. The shapes of discontinuities that can be identified by the smallest 
wavelets are simpler than those that can be identified by the longest wavelets. 
Therefore, to identify

• A signal discontinuity, use the haar wavelet

• A rupture in the j-th derivative, select a sufficiently regular wavelet with at 
least j vanishing moments. (See “Detecting Discontinuities and Breakdown 
Points II” on page 3-6.)
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The presence of noise, which is after all a fairly common situation in signal 
processing, makes identification of discontinuities more complicated. If the 
first levels of the decomposition can be used to eliminate a large part of the 
noise, the rupture is sometimes visible at deeper levels in the decomposition. 

Check, for example, the sample analysis File⇒Example Analysis⇒Basic 
Signals⇒ramp + white noise (MAT-file wnoislop). The rupture is visible in 
the level-six approximation (A6) of this signal.
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Detecting Discontinuities and Breakdown Points II
The purpose of this example is to show how analysis by wavelets can detect a 
discontinuity in one of a signal’s derivatives. The signal, while apparently a 
single smooth curve, is actually composed of two separate exponentials that are 
connected at time = 500. The discontinuity occurs only in the second derivative, 
at time = 500.

We have zoomed in on the middle part of the signal to show more clearly what 
happens around time = 500. The details are high only in the middle of the 
signal and are negligible elsewhere. This suggests the presence of 
high-frequency information — a sudden change or discontinuity — around     
time = 500.
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Discussion
Regularity can be an important criterion in selecting a wavelet. We have 
chosen to use db4, which is sufficiently regular for this analysis. Had we chosen 
the haar wavelet, the discontinuity would not have been detected. If you try 
repeating this analysis using haar at level two, you’ll notice that the details are 
equal to zero at time = 500. 

Note that to detect a singularity, the selected wavelet must be sufficiently 
regular, which implies a longer filter impulse response. 

See the sections “Frequently Asked Questions” on page 6-63 and “Wavelet 
Families: Additional Discussion” on page 6-73 for a discussion of the 
mathematical meaning of regularity and a comparison of the regularity of 
various wavelets.
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Detecting Long-Term Evolution
The purpose of this example is to show how analysis by wavelets can detect the 
overall trend of a signal. The signal in this case is a ramp obscured by “colored” 
(limited-spectrum) noise. (We have zoomed in along the x-axis to avoid showing 
edge effects.)

There is so much noise in the original signal, s, that its overall shape is not 
apparent upon visual inspection. In this level-6 analysis, we note that the trend 
becomes more and more clear with each approximation, A1 to A6. Why is this?

The trend represents the slowest part of the signal. In wavelet analysis terms, 
this corresponds to the greatest scale value. As the scale increases, the 
resolution decreases, producing a better estimate of the unknown trend. 

Another way to think of this is in terms of frequency. Successive 
approximations possess progressively less high-frequency information. With 
the higher frequencies removed, what’s left is the overall trend of the signal.
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Discussion
Wavelet analysis is useful in revealing signal trends, a goal that is 
complementary to the one of revealing a signal hidden in noise. It’s important 
to remember that the trend is the slowest part of the signal. If the signal itself 
includes sharp changes, then successive approximations look less and less 
similar to the original signal. 

Consider the demo analysis File⇒Example Analysis⇒Basic Signals⇒Step 
signal (MAT-file wstep.mat). It is instructive to analyze this signal using the 
Wavelet 1-D tool and see what happens to the successive approximations. Try 
it.
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Detecting Self-Similarity
The purpose of this example is to show how analysis by wavelets can detect a 
self-similar, or fractal, signal. The signal here is the Koch curve — a synthetic 
signal that is built recursively.

This analysis was performed with the Continuous Wavelet 1-D graphical tool. 
A repeating pattern in the wavelet coefficients plot is characteristic of a signal 
that looks similar on many scales. 

Wavelet Coefficients and Self-Similarity
From an intuitive point of view, the wavelet decomposition consists of 
calculating a “resemblance index” between the signal and the wavelet. If the 
index is large, the resemblance is strong, otherwise it is slight. The indices are 
the wavelet coefficients.
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If a signal is similar to itself at different scales, then the “resemblance index” 
or wavelet coefficients also will be similar at different scales. In the coefficients 
plot, which shows scale on the vertical axis, this self-similarity generates a 
characteristic pattern.

Discussion
The work of many authors and the trials that they have carried out suggest 
that wavelet decomposition is very well adapted to the study of the fractal 
properties of signals and images.

When the characteristics of a fractal evolve with time and become local, the 
signal is called a multifractal. The wavelets then are an especially suitable tool 
for practical analysis and generation.
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Identifying Pure Frequencies
The purpose of this example is to show how analysis by wavelets can effectively 
perform what is thought of as a Fourier-type function — that is, resolving a 
signal into constituent sinusoids of different frequencies. The signal is a sum 
of three pure sine waves.

Discussion
The signal is a sum of three sines: slow, medium, and rapid, which have periods 
(relative to the sampling period of 1) of 200, 20, and 2, respectively. 

The slow, medium, and rapid sinusoids appear most clearly in approximation 
A4, detail D4, and detail D1, respectively. The slight differences that can be 
observed on the decompositions can be attributed to the sampling period. 

Detail D1 contains primarily the signal components whose period is between 1 
and 2 (i.e., the rapid sine), but this period is not visible at the scale that is used 
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for the graph. Zooming in on detail D1 (see below) reveals that each “belly” is 
composed of 10 oscillations, and this can be used to estimate the period. We 
indeed find that it is close to 2.

The detail D3 and (to an even greater extent), the detail D4 contain the medium 
sine frequencies. We notice that there is a breakdown between approximations 
A3 and A4, from which the medium frequency information has been subtracted. 
We should therefore use approximations A1 to A3 to estimate the period of the 
medium sine. Zooming in on A1 reveals a period of around 20. 

Now only the period of the slow sine remains to be determined. Examination of 
approximation A4 (see the figure in “Identifying Pure Frequencies” on 
page 3-12) shows that the distance between two successive maximums is 200. 
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This slow sine still is visible in approximation A5, but were we to extend this 
analysis to further levels, we would find that it disappears from the 
approximation and moves into the details at level 8.

This also can be obtained automatically using the scal2frq function, which 
associates pseudo-frequencies to scales for a given wavelet.

lev = [1:5]; a = 2.^lev;     % scales.
wname ='db3';
delta = 1;
f = scal2frq(a,wname,delta); % corresponding pseudo-frequencies.
per  = 1./f;                 % corresponding pseudo-periods.

Leading to

In summation, we have used wavelet analysis to determine the frequencies of 
pure sinusoidal signal components. We were able to do this because the 
different frequencies predominate at different scales, and each scale is taken 
into account by our analysis.

Signal Component Found In Period Frequency

Slow sine Approximation A4 200 0.005

Medium sine Detail D4 20 0.05

Rapid sine Detail D1 2 0.5

Level Scale Pseudo-Period Pseudo-Frequency

1 2 2.5 0.4 

2 4 5 0.2 

3 8 10 0.1 

4 16 20 0.05 

5 32 40 0.025 
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Suppressing Signals
The purpose of this example is to illustrate the property that causes the 
decomposition of a polynomial to produce null details, provided the number of 
vanishing moments of the wavelet (N for a Daubechies wavelet dbN) exceeds the 
degree of the polynomial. The signal here is a second-degree polynomial 
combined with a small amount of white noise. 

Note that only the noise comes through in the details. The peak-to-peak 
magnitude of the details is about 2, while the amplitude of the polynomial 
signal is on the order of 105.

The db3 wavelet, which has three vanishing moments, was used for this 
analysis. Note that a wavelet of the Daubechies family with fewer vanishing 
moments would fail to suppress the polynomial signal. For more information, 
see the section “Daubechies Wavelets: dbN” on page 6-74.
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Here is what the first three details look like when we perform the same 
analysis with db2.

The peak-to-peak magnitudes of the details D1, D2, and D3 are 2, 10, and 40, 
respectively. These are much higher detail magnitudes than those obtained 
using db3.

Discussion
For the db2 analysis, the details for levels 2 to 4 show a periodic form that is 
very regular, and that increases with the level. This is explained by the fact 
that the detail for level j takes into account primarily the fluctuations of the 
polynomial function around its mean value on dyadic intervals that are 2j long. 
The fluctuations are periodic and very large in relation to the details of the 
noise decomposition.
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On the other hand, for the db3 analysis, we find the presence of white noise 
thus indicating that the polynomial does not come into play in any of the 
details. The wavelet suppresses the polynomial part and analyzes the noise.

Suppressing part of a signal allows us to highlight the remainder.

Vanishing Moments
The ability of a wavelet to suppress a polynomial depends on a crucial 
mathematical characteristic of the wavelet called its number of vanishing 
moments. A technical discussion of vanishing moments appears in the sections 
“Frequently Asked Questions” on page 6-63 and “Wavelet Families: Additional 
Discussion” on page 6-73. For the present discussion, it suffices to think of 
“moment” as an extension of “average.” Since a wavelet’s average value is zero, 
it has (at least) one vanishing moment. 

More precisely, if the average value of is zero (where is the wavelet 
function), for  then the wavelet has  vanishing moments and 
polynomials of degree n are suppressed by this wavelet. 

xkψ x( ) ψ x( )
k 0 … n,, ,= n 1+
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De-Noising Signals
The purpose of this example is to show how to de-noise a signal using wavelet 
analysis. This example also gives us an opportunity to demonstrate the 
automatic thresholding feature of the Wavelet 1-D graphical interface tool. 
The signal to be analyzed is a Doppler-shifted sinusoid with some added noise.

Discussion
We note that the highest frequencies appear at the start of the original signal. 
The successive approximations appear less and less noisy; however, they also 
lose progressively more high-frequency information. In approximation A5, for 
example, about the first 20% of the signal is truncated.

Click the De-noise button to bring up the Wavelet 1-D De-Noising window. 
This window shows each detail along with its automatically set de-noising 
threshold.

200 400 600 800 1000

−5

0

5

a
1

−5

0

5

a
2

−5

0

5

a
3

−5

0

5

a
4

−5

0

5

a
5

−5

0

5

s

Signal and Approximation(s)

−5

0

5

s

cfs

Coefs, Signal and Detail(s)

5
4
3
2
1

−4
−2

0
2

d
5

−5

0

5

d
4

−2
0

2

d
3

−2

0

2

d
2

200 400 600 800 1000
−2

0

2

d
1

Example Analysis
Noisy Doppler

MAT-file
noisdopp.mat

Wavelet
sym4

Level
5



De-Noising Signals

3-19

Click the De-noise button. On the screen, the original and de-noised signals 
appear superimposed in red and yellow, respectively. 
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Note that the de-noised signal is flat initially. Some of the highest-frequency 
signal information was lost during the de-noising process, although less was 
lost here than in the higher level approximations A4 and A5.

For this signal, wavelet packet analysis does a better job of removing the noise 
without compromising the high-frequency information. Explore on your own: 
try repeating this analysis using the Wavelet Packet 1-D tool. Select the menu 
item File⇒Example Analysis⇒noisdopp.
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De-Noising Images
The purpose of this example is to show how to de-noise an image using both a 
two-dimensional wavelet analysis and a two-dimensional stationary wavelet 
analysis. De-noising is one of the most important applications of wavelets.

The image to be de-noised is a noisy version of a piece of the following image.

For this example, switch the extension mode to symmetric padding using the 
command

dwtmode('sym')

Open the Wavelet 2-D tool, select from the File menu the Load Image option, 
and select the MAT-file noiswom.mat, which should reside in the MATLAB® 
directory toolbox/wavelet/wavedemo.

The image is loaded into the Wavelet 2-D tool. Select the haar wavelet and 
select 4 from the level menu, and then click the Analyze button.
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The analysis appears in the Wavelet 2-D window.

Click the De-noise button (located at the middle right) to bring up the Wavelet 
2-D -- De-noising window.

Discussion
The graphical tool provides automatically generated thresholds. From the 
Select thresholding method menu, select the item Penalize low and click the 
De-noise button.

Example Analysis
Noisy Woman

MAT-file
noiswom.mat

Wavelet
haar

Level
4
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The de-noised image exhibits some blocking effects. Let's try another wavelet. 
Click the Close button to go back to the Wavelet 2-D window. Select the sym6 
wavelet, and then click the Analyze button. Click the De-noise button to bring 
up the Wavelet 2-D -- De-noising window again. 

From the Select thresholding method menu, select the item Penalize low, 
and click the De-noise button.
  

The de-noised image exhibits some ringing effects. Let's try another strategy 
based on the two-dimensional stationary wavelet analysis to de-noise images. 
The basic idea is to average many slightly different discrete wavelet analyses. 
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For more information, see the section “Discrete Stationary Wavelet Transform 
(SWT)” on page 6-46.

Click the Close button to go back to the Wavelet 2-D window and click the 
Close button again. Open the SWT De-noising 2-D tool, select from the File 
menu the Load Image option and select the MAT-file noiswom.mat. Select the 
haar wavelet and select 4 from the level menu, and then click the Decompose 
Image button.

The selected thresholding method is Penalize low. Use the Sparsity slider to 
adjust the threshold value close to 44.5 (the same as before to facilitate the 
comparison with the first trial), and then click the De-noise button.
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The result is more satisfactory. It’s possible to improve it slightly.

Select the sym6 wavelet and click the Decompose Image button. Use the 
Sparsity slider to adjust the threshold value close to 40.44 (the same as before 
to facilitate the comparison with the second trial), and then click the De-noise 
button.

At the end of this example, turn back the extension mode to zero-padding using 
the command

dwtmode('zpd')
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Compressing Images
The purpose of this example is to show how to compress an image using 
two-dimensional wavelet analysis. Compression is one of the most important 
applications of wavelets. The image to be compressed is a fingerprint. 

For this example, open the Wavelet 2-D tool and select the menu item 
File⇒Example Analysis⇒at level 3, with haar −−> finger.

The analysis appears in the Wavelet 2-D tool. Click the Compress button 
(located at the middle right) to bring up the Wavelet 2-D Compression 
window.

Example Analysis
Finger

MAT-file
detfingr.mat

Wavelet
haar

Level
3
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Discussion
The graphical tool provides an automatically generated threshold. From the 
Select thresholding method menu, select Remove near 0, setting the 
threshold to 3.5. Then, click the Compress button. Values under the threshold 
are forced to zero, achieving about 42% zeros while retaining almost all 
(99.96%) the energy of the original image.

The automatic thresholds usually achieve reasonable and various balances 
between the number of zeros and retained image energy. Depending on your 
data and your analysis criteria, you may find setting more or less aggressive 
thresholds achieves better results.

Here we’ve set the global threshold to around 30. This results in a compressed 
image consisting of about 92% zeros with 97.7% retained energy.
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Fast Multiplication of Large Matrices
This section illustrates matrix-vector multiplication in the wavelet domain.

• The problem is 

let m be a dense matrix of large size (n, n). We want to perform a large 
number, L, of multiplications of m by vectors v.

• The idea is 

Stage 1: (executed once) Compute the matrix approximation, sm, at a 
suitable level k. The matrix will be assimilated with an image. 

Stage 2: (executed L times) divided in the following three steps: 

a Compute vector approximation. 

b Compute multiplication in wavelet domain. 

c Reconstruct vector approximation.

It is clear that when sm is a sufficiently good approximation of m, the error 
with respect to ordinary multiplication can be small. This is the case in the first 
example below where m is a magic square. Conversely, when the wavelet 
representation of the matrix m is dense the error will be large (for example, if 
all the coefficients have the same order of magnitude). This is the case in the 
second example below where m is two-dimensional Gaussian white noise. The 
figure in Example 1 compares for n = 512, the number of floating point 
operations (flops) required by wavelet based method and by ordinary method 
versus L.
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Example 1: Effective Fast Matrix Multiplication

n = 512; 
lev = 5; 
wav = 'db1';

% Wavelet based matrix multiplication by a vector: 
% a good  example 
% Matrix is magic(512) Vector is (1:512)

m = magic(n); 
v = (1:n)'; 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wav);

% ordinary matrix multiplication by a vector. 
p = m * v; 

% The number of floating point operations used is 524,288

% Compute matrix approximation at level 5. 
sm = m;
for i = 1:lev 

sm = dyaddown(conv2(sm,Lo_D),'c'); 
sm = dyaddown(conv2(sm,Lo_D'),'r'); 

end 

% The number of floating point operations used is 2,095,154

% The three steps: 
% 1. Compute vector approximation. 
% 2. Compute multiplication in wavelet domain. 
% 3. Reconstruct vector approximation.

sv = v; 
for i = 1:lev, sv = dyaddown(conv(sv,Lo_D)); end 
sp = sm * sv; 
for i = 1:lev, sp = conv(dyadup(sp),Lo_R); end 
sp = wkeep(sp,length(v)); 

% Now, the number of floating point operations used is 9058
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% Relative square norm error in percent when using wavelets. 
rnrm = 100 ∗ (norm(p-sp)/norm(p))

rnrm = 
2.9744e-06

Example 2: Ineffective Fast Matrix Multiplication
The commands used are the same as in Example 1, but applied to a new matrix 
m. 

% Wavelet based matrix multiplication by a vector: 
% a bad  example with a randn matrix.
% Change the matrix m of example1 using:
randn('state',0);
m = randn(n,n);

Then, you obtain

% Relative square norm error in percent 
rnrm = 100 * (norm(p-sp)/norm(p))

rnrm = 
99.2137



 

4
Wavelets in Action: 
Examples and Case Studies

This chapter presents examples of wavelet decomposition. Suggested areas for further exploration 
follow most examples, along with a summary of the topics addressed by that example. This chapter 
also includes a case study that examines the practical uses of wavelet analysis in greater detail, as 
well as a demonstration of the application of wavelets for fast multiplication of large matrices. An 
extended discussion of many of the topics addressed by the examples can be found in “Advanced 
Concepts” on page 6-1. 

Illustrated Examples (p. 4-2) Illustrated examples of wavelet decomposition

Case Study: An Electrical Signal (p. 4-36) Detailed example of electrical load analysis using 
wavelet decomposition
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Illustrated Examples
Fourteen illustrated examples are included in this section, organized as shown:

Example Equation Signal 
Name

MAT-File

Example 1: A Sum of Sines 
on page 4-8

A sum of sines: s1(t) sumsin 

Example 2: A Frequency 
Breakdown on page 4-10

A frequency breakdown: s2(t) freqbrk 

Example 3: Uniform White 
Noise on page 4-12

A uniform white noise:

on the interval

b1(t) whitnois 

Example 4: Colored AR(3) 
Noise on page 4-14

A colored AR(3) noise: b2(t) warma 

Example 5: Polynomial + 
White Noise on page 4-16

A polynomial + a white noise:

on the interval

s3(t) noispol 

Example 6: A Step Signal on 
page 4-18

A step signal: s4(t) wstep 

s1 t( ) 3t( )sin 0.3t( )sin 0.03t( )sin+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s2 t( ) 0.03t( )sin=

s2 t( ) 0.3t( )sin=

0.5   – 0.5[ ]

b2 t( ) 1.5b2 t 1–( )– 0.75b2 t 2–( )–=

0.125b2 t 3–( )– b1 t( ) 0.5+ +

1   1000[ ]

s3 t( ) t2 t– 1 b1 t( )+ +=

1 t 500,≤ ≤
501 t 1000,≤ ≤

s4 t( ) 0=

s4 t( ) 20=
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Example 7: Two Proximal 
Discontinuities on page 4-20

Two proximal discontinuities: s5(t) nearbrk

Example 8: A 
Second-Derivative 
Discontinuity on page 4-22

A second-derivative discontinuity:

s6 is f3 sampled at 10-3

s6(t) scddvbrk

Example 9: A Ramp + White 
Noise on page 4-24

A ramp + a white noise: s7(t) wnoislop

Example 10: A Ramp + 
Colored Noise on page 4-26

A ramp + a colored noise: s8(t) cnoislop

Example 11: A Sine + White 
Noise on page 4-28

A sine + a white noise: s9(t) noissin

Example Equation Signal 
Name

MAT-File

1 t 499,≤ ≤
500 t 510,≤ ≤
511 t,≤

s5 t( ) 3t=

s5 t( ) 1500=

s5 t( ) 3t 30–=

t 0.5   – 0.5[ ] R;⊂∈
t 0, f3 t( )< 4t2–( )exp=

t 0, f3 t( )≥ t2–( )exp=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s7 t( ) 3t
500
---------- b1 t( )+=

s7 t( ) 3 b1 t( )+=

1 t 499,≤ ≤

500 t 1000,≤ ≤

s8 t( ) t
500
---------- b2 t( )+=

s8 t( ) 1 b2 t( )+=

s9 t( ) 0.03t( )sin b1 t( )+=
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Please note that

• All the decompositions use Daubechies wavelets.

• The examples show the signal, the approximations, and the details.

The examples include specific comments and feature distinct domains — for 
instance, if the level of decomposition is 5,

• The left column contains the signal and the approximations A5 to A1.

• The right column contains the signal and the details D5 to D1.

• The approximation A1 is located under A2, A2 under A3, and so on; the same 
is true for the details.

• The abscissa axis represents the time; the unit for the ordinate axis for 
approximations and details is the same as that of the signal.

Example 12: A Triangle + A 
Sine on page 4-30

A triangle + a sine: s10(t) trsin

Example 13: A Triangle + A 
Sine + Noise on page 4-32

A triangle + a sine + a noise: s11(t) wntrsin

Example 14: A Real 
Electricity Consumption 
Signal on page 4-34

A real electricity consumption signal — leleccum

Example Equation Signal 
Name

MAT-File

1 t 500,≤ ≤

501 t 1000,≤ ≤

s10 t( ) t 1–
500
----------- 0.3t( )sin+=

s10 t( ) 1000 t–
500

--------------------- 0.3t( )sin+=

501 t 1000,≤ ≤
s11 t( ) 1000 t–

500
--------------------- 0.3t( )sin b1 t( )+ +=

1 t 500, s11 t( ) t 1–
500
----------- 0.3t( )sin b1 t( )+ +=≤ ≤
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• When the approximations do not provide enough information, they are 
replaced by details obtained by changing wavelets.

• The examples include questions for you to think about: 

- What can be seen on the figure? 

- What additional questions can be studied?

Advice to the Reader
You should follow along and process these examples on your own, using either 
the graphical interface or the command line functions. 

Use the graphical interface for immediate signal processing. To execute the 
analyses included in the figures, 

1 To bring up the Wavelet Toolbox Main Menu, type

wavemenu

2 Select the Wavelet 1-D menu option to open the Wavelet 1-D tool.

3 From the Wavelet 1-D tool, choose the File⇒Example Analysis menu 
option.

4 From the dialog box, select the sample analysis in question.

This triggers the execution of the examples.

When using the command line, follow the process illustrated in this M-file to 
conduct calculations:

% Load original 1-D signal.
load sumsin; s = sumsin;

% Perform the decomposition of s at level 5, using coif3.
w = 'coif3'
[c,l] = wavedec(s,5,w);

% Reconstruct the approximation signals and detail signals at 
% levels 1 to 5, using the wavelet decomposition structure [c,l].
for i = 1:5

A(i,:) = wrcoef('a',c,l,w,i);
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D(i,:) = wrcoef('d',c,l,w,i);
end

Note  This loop replaces 10 separate wrcoef statements defining 
approximations and details. The variable A contains the five approximations 
and the variable D contains the five details.

% Plots. 
t = 100:900; 
subplot(6,2,1); plot(t,s(t),'r'); 
title('Orig. signal and approx. 1 to 5.'); 
subplot(6,2,2); plot(t,s(t),'r'); 
title('Orig. signal and details 1 to 5.'); 
for i = 1:5, 

subplot(6,2,2*i+1); plot(t,A(5-i+1,t),'b'); 
subplot(6,2,2*i+2); plot(t,D(5-i+1,t),'g'); 

end
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About Further Exploration

Tip 1. On all figures, visually check that for j = 0, 1, ..., Aj = Aj+1 + Dj+1.

Tip 2. Don’t forget to change wavelets. Test the shortest ones first. 

Tip 3. Identify edge effects. They will create problems for a correct analysis. At 
present, there is no easy way to avoid them perfectly. You can use tools 
described in the section “Dealing with Border Distortion” on page 6-36 and see 
also the dwtmode reference page. They should eliminate or greatly reduce these 
effects. 

Tip 4. As much as possible, conduct calculations manually to cross-check 
results with the values in the graphic representations. Manual calculations are 
possible with the db1 wavelet.

For the sake of simplicity in the following examples, we use only the haar and 
db family wavelets, which are the most frequently used wavelets.
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Example 1: A Sum of Sines
Analyzing wavelet: db3 

Decomposition levels: 5

The signal is composed of the sum of three sines: slow, medium, and rapid. 
With regard to the sampling period equal to 1, the periods are approximately 
200, 20, and 2 respectively. We should, therefore, see this later period in D1, 
the medium sine in D4, and the slow sine in A4. The slight differences that can 
be observed on the decompositions can be attributed to the sampling period. 
The scale of the approximation charts is 2, 4, or 10 times larger than that of the 
details. D1 contains primarily the components whose period is situated 
between 1 and 2 (i.e., the rapid sine), but this period is not visible at the scale 
that is used for the graph. Zooming in on D1 reveals that each “belly” is 
composed of 10 oscillations, and can be used to estimate the period. We find 
that the period is close to 2. D2 is very small. This is also seen in the 
approximations: the first two resemble one another, since .

The detail D3 and, to an even greater extent, the detail D4 contain the medium 
sine. We notice that there is a breakdown between approximations 3 and 4.

Approximations A1 to A3 can be used to estimate the period of the medium sine. 
Now, only the slow sine, which appears in A4, remains to be determined. The 
distance between two successive maximums is equal to 200, which is the period 
of the slow sine. This latter sine is still visible in A5, but will disappear from 
the approximation and move into the details at level 8.

A1 A2 D2+=
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Example 1: A Sum of Sines

Addressed topics • Detecting breakdown points

• Detecting long-term evolution

• Identifying pure frequencies

• The effect of a wavelet on a sine

• Details and approximations: a signal moves from 
an approximation to a detail

• The level at which characteristics appear

Further exploration • Compare with a Fourier analysis.

• Change the frequencies. Analyze other linear 
combinations.
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Example 2: A Frequency Breakdown
Analyzing wavelet: db5 

Decomposition levels: 5 

The signal is formed of a slow sine and a medium sine, on either side of 500. 
These two sines are not connected in a continuous manner: D1 and D2 can be 
used to detect this discontinuity. It is localized very precisely: only a small 
domain around 500 contains large details. This is because the rupture contains 
the high-frequency part; the frequencies in the rest of the signal are not as 
high. It should be noted that if we are interested only in identifying the 
discontinuity, db1 is more useful than db5.

D3 and D4 contain the medium sine as in the previous analysis. The slow sine 
appears clearly alone in A5. It is more regular than in the s1 analysis, since db5 
is more regular than db3. If the same signal had been analyzed by the Fourier 
transform, we would not have been able to detect the instant corresponding to 
the signal’s frequency change, whereas it is clearly observable here.
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Example 2: A Frequency Breakdown

Addressed topics • Suppressing signals

• Detecting long-term evolution

Further exploration • Compare to the signal s1.

• On a longer signal, select a deeper level of 
decomposition in such a way that the slow 
sinusoid appears into the details.

• Compare with a Fourier analysis.

• Compare with a windowed Fourier analysis.
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Example 3: Uniform White Noise
Analyzing wavelet: db3 

Decomposition levels: 5 

At all levels we encounter noise-type signals that are clearly irregular. This is 
because all the frequencies carry the same energy. The variances, however, 
decrease regularly between one level and the next as can be seen reading the 
detail chart (on the right) and the approximations (on the left).

The variance decreases two-fold between one level and the next, i.e., 
variance(Dj) = variance(Dj - 1) / 2. Lastly, it should be noted that the details and 
approximations are not white noise, and that these signals are increasingly 
interdependent as the resolution decreases. On the other hand, the wavelet 
coefficients are random, noncorrelated variables. This property is not evident 
on the reconstructed signals shown here, but it can be guessed at from the 
representation of the coefficients.
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Example 3: Uniform White Noise

Addressed topics • Processing noise

• The shapes of the decomposition values

• The evolution of these shapes according to level; 
the correlation increases, the variance decreases

Further exploration • Compare the frequencies included in the details 
with those in the approximations.

• Study the values of the coefficients and their 
distribution.

• On the continuous analysis, identify the chaotic 
aspect of the colors.

• Replace the uniform white noise by a Gaussian 
white noise or other noise.
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Example 4: Colored AR(3) Noise
Analyzing wavelet: db3 

Decomposition levels: 5 

Note  AR(3) means AutoRegressive model of order 3.

This figure can be examined in view of Example 3: Uniform White Noise on 
page 4-12, since we are confronted here with a nonwhite noise whose spectrum 
is mainly at the higher frequencies. Therefore, it is found primarily in D1, 
which contains the major portion of the signal. In this situation, which is 
commonly encountered in practice, the effects of the noise on the analysis 
decrease considerably more rapidly than in the case of white noise. In A3, A4, 
and A5, we encounter the same scheme as that in the analysis of (see the 
table in “Example 3: Uniform White Noise” on page 4-12), the noise from which 

is built using linear filtering. (  and  are defined explicitly in 
“Illustrated Examples” on page 4-2, Examples 3 and 4.)
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Example 4: Colored AR(3) Noise

Addressed topics • Processing noise

• The relative importance of different details

• The relative importance of D1 and A1

Further 
exploration

• Compare the detail frequencies with those in the 
approximations.

• Compare approximations A3, A4, and A5 with those 
shown in Example 3: Uniform White Noise on page 
4-12.

• Replace AR(3) with an ARMA (AutoRegressive 
Moving Average) model noise. For instance,

• Study an ARIMA (Integrated ARMA) model noise. 
For instance,

 

• Check that each detail can be modeled by an ARMA 
process.

b3 t( ) 1.5– b3 t 1–( ) 0.75b3 t 2–( )– 0.125b3 t 3–( )–=

+ b1 t( ) 0.7b1 t 1–( )–

b4 t( ) b4 t 1–( ) b3 t( )+=
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Example 5: Polynomial + White Noise
Analyzing wavelets: db2 and db3 

Decomposition levels: 4 

The purpose of this analysis is to illustrate the property that causes the 
decomposition by dbN of a p-degree polynomial to produce null details as long 
as N > p. In this case, p=2 and we examine the first four levels of details for two 
values of N: one is too small, N=2 on the left, and the other is sufficient, N=3 on 
the right. The approximations are left out since they differ very little from the 
signal itself.

For db2 (on the left), we obtain the decomposition of t2 + b1(t), since the -t + 1 
part of the signal is suppressed by the wavelet. In fact, with the exception of 
level 1, where noise-generated irregularities can be seen, the details for levels 
2 to 4 show a periodic form that is very regular, and which increases with the 
level. This is because the detail for level j takes into account that the 
fluctuations of the function around its mean value on dyadic intervals are long. 
The fluctuations are periodic and very large in relation to the details of the 
noise decomposition.

On the other hand, for db3 (on the right) we again find the presence of white 
noise, thus indicating that the polynomial does not come into play in any of the 
details. The wavelet suppresses the polynomial part and analyzes the noise.
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Example 5: Polynomial + White Noise

Addressed topics • Suppressing signals

• Compare the results of the processing for the 
following wavelets: the short db2 and the longer 
db3.

• Explain the regularity that is visible in D3 and D4 
in the analysis by db2.

Further exploration • Increase noise intensity and repeat the analysis.
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Example 6: A Step Signal
Analyzing wavelet: db2 

Decomposition levels: 5 

In this case, we are faced with the simplest example of a rupture (i.e., a step). 
The time instant when the jump occurs is equal to 500. The break is detected 
at all levels, but it is obviously detected with greater precision in the higher 
resolutions (levels 1 and 2) than in the lower ones (levels 4 and 5). It is very 
precisely localized at level 1, where only a very small zone around the jump 
time can be seen.

It should be noted that the reconstructed details are primarily composed of the 
basic wavelet represented in the initial time.

Furthermore, the rupture is more precisely localized when the wavelet 
corresponds to a short filter.
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Example 6: A Step Signal

Addressed topics • Detecting breakdown points

• Suppressing signals

• Detecting long-term evolution

• Identifying the range width of the variations of 
details and approximations

Further exploration • Use the coefficients of the FIR filter associated 
with the wavelet to check the values of D1.

• Replace the step by an impulse.

• Add noise to the signal and repeat the analysis.



4 Wavelets in Action: Examples and Case Studies

4-20

Example 7: Two Proximal Discontinuities
Analyzing wavelet: db2 and db7 

Decomposition levels: 5 

The signal is formed of two straight lines with identical slopes, extending 
across a very short plateau. On the initial signal, the plateau is in fact barely 
visible to the naked eye. Two analyses are thus carried out: one on a well 
localized wavelet with the short filter (db2, shown on the left side of the figure); 
and the other on a wavelet having a longer filter (db7, shown on the right side 
of the figure).

In both analyses, the plateau is detected clearly. With the exception of a fairly 
limited domain, D1 is equal to zero. The regularity of the signal in the plateau, 
however, is clearly distinguished for db2 (for which plateau beginning and end 
time are distinguished), whereas for db7 both discontinuities are fused and 
only the entire plateau can be said to be visible.

This example suggests that the selected wavelets should be associated with 
short filters to distinguish proximal discontinuities of the first derivative. A 
look at the other detail levels again shows the lack of precision when detecting 
at low resolutions. The wavelet filters the straight line and analyzes the 
discontinuities.
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Example 7: Two Proximal Discontinuities

Addressed topics • Detecting breakdown points

Further exploration • Move the discontinuities closer together and 
further apart.

• Add noise to the signal until the rupture is no 
longer visible.

• Try using other wavelets, haar for instance.
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Example 8: A Second-Derivative Discontinuity
Analyzing wavelets: db1 and db4 

Decomposition levels: 2 

This figure shows that the regularity can be an important criterion in selecting 
a wavelet. The basic function is composed of two exponentials that are 
connected at 0, and the analyzed signal is the sampling of the continuous 
function with increments of 10–3. The sampled signal is analyzed using two 
different wavelets: db1, which is insufficiently regular (shown on the left side 
of the figure); and db4, which is sufficiently regular (shown on the right side of 
the figure).

Looking at the figure on the left, notice that the singularity has not been 
detected in the extent that the details are equal to 0 at 0. The black areas 
correspond to very rapid oscillations of the details. These values are equal to 
the difference between the function and an approximation using a constant 
function. Close to 0, the slow decrease of the details absolute values followed by 
a slow increase is due to the fact that the function derivative is zero and 
continuous at 0. The value of the details is very small (close to 10–3 for db1 and 
10–6 for db4), since the signal is very smooth and does not contain any high 
frequency. This value is even smaller for db4, since the wavelet is more regular 
than db1.

However, with db4 (right side of the figure), the discontinuity is well detected; 
the details are high only close to 0, and are 0 everywhere else. This is the only 
element that can be derived from the analysis. In this case, as a conclusion, 
notice that the selected wavelet must be sufficiently regular, which implies a 
longer filter impulse response to detect the singularity.

Note  To produce the figure below you can use the One-Dimensional Wavelet 
GUI Tool. Type wavemenu at the MATLAB® prompt and click Wavelet 1-D. 
Then, select File > Example Analysis > Basic Signals > with db1 at level 
2 --->Second Derivative Breakdown (and ... with db4 ...). Detail values 
are very small, so to get the same shapes you must zoom the y-axis many 
times (close to 10–3 for db1 and 10–6 for db4).
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Example 8: A Second-Derivative Discontinuity

Addressed topics • Detecting breakdown points

• Suppressing signals

• Identifying a difficult discontinuity

• Carefully selecting a wavelet to reveal an effect

Further exploration • Calculate the detail values for the Haar wavelet.

• Be aware of parasitic effects: rapid detail 
fluctuations may be artifacts.

• Add noise to the signal until the rupture is no 
longer visible.
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Example 9: A Ramp + White Noise
Analyzing wavelet: db3 

Decomposition levels: 6 

The signal is built from a trend plus noise. The trend is a slow linear rise from 
0 to 3, up to t=500, and becoming constant afterwards. The noise is a uniform 
zero-mean white noise, varying between -0.5 and 0.5 (see the analyzed 
signal b1).

Looking at the figure, in the chart on the right, we again find the decomposition 
of noise in the details. In the charts on the left, the approximations form 
increasingly precise estimates of the ramp with less and less noise. These 
approximations are quite acceptable from level 3, and the ramp is well 
reconstructed at level 6.

We can, therefore, separate the ramp from the noise. Although the noise affects 
all scales, its effect decreases sufficiently quickly for the low-resolution 
approximations to restore the ramp. It should also be noted that the breakdown 
point of the ramp is shown with good precision. This is due to the fact that the 
ramp is recovered at too low a resolution.

The uniform noise indicates that the ramp might be best estimated using half 
sums for the higher and lower portions of the signal. This approach is not 
applicable for other noises.
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Example 9: A Ramp + White Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying noises and approximations

Further exploration • Compare with the white noise b1(t) shown in 
Example 3: Uniform White Noise on page 4-12.

• Identify the number of levels needed to suppress 
the noise almost entirely.

• Change the noise.
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Example 10: A Ramp + Colored Noise
Analyzing wavelet: db3 

Decomposition levels: 6 

The signal is built in the same manner as in “Example 9: A Ramp + White 
Noise” on page 4-24, using a trend plus a noise. The trend is a slow linear 
increase from 0 to 1, up to t=500. Beyond this time, the value remains constant. 
The noise is a zero mean AR(3) noise, varying between -3 and 3 (see the 
analyzed signal b2). The scale of the noise is indeed six times greater than that 
of the ramp. At first glance, the situation seems a little bit less favorable than 
in the previous example, in terms of the separation between the ramp and the 
noise. This is actually a misconception, since the two signal components are 
more precisely separated in frequency.

Looking at the figure, the charts on the right show the detail decomposition of 
the colored noise. The charts on the left show a decomposition that resembles 
the one in the previous analysis. Starting at level 3, the curves provide 
satisfactory approximations of the ramp.

0.4
0.6
0.8

1
1.2

a6

0.5

1

a5

0.5

1

a4

0.2
0.4
0.6
0.8

1
1.2

a3

0.2
0.4
0.6
0.8

1
1.2

a2

−0.04
−0.02

0
0.02
0.04

d5

−0.05
0

0.05
0.1

d4

−0.1
0

0.1
0.2

d3

−0.2

0

0.2

d2

200 400 600 800

−2

0

2

d1

−1
0
1
2
3

s

Signal and Approximations

−1
0
1
2
3

s

Signal and Details

200 400 600 800
0

0.5

1
a1

−0.04
−0.02

0
0.02
0.04

d6



Illustrated Examples

4-27

Example 10: A Ramp + Colored Noise

Addressed topics • Detecting breakdown points

• Processing noise

• Detecting long-term evolution

• Splitting signal components

Further exploration • Compare with the s7(t) signal shown in Example 
9: A Ramp + White Noise on page 4-24.

• Identify the number of levels needed to suppress 
the noise almost entirely.

• Identify the noise characteristics. Use the 
coefficients and the command line mode.
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Example 11: A Sine + White Noise
Analyzing wavelet: db5 

Decomposition levels: 5 

The signal is formed of the sum of two previously analyzed signals: the slow 
sine with a period close to 200 and the uniform white noise b1. This example is 
an illustration of the linear property of decompositions: the analysis of the sum 
of two signals is equal to the sum of analyses.

The details correspond to those obtained during the decomposition of the white 
noise.

The sine is found in the approximation A5. This is a high enough level for the 
effect of the noise to be negligible in relation to the amplitude of the sine.
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Example 11: A Sine + White Noise

Addressed topics • Processing noise

• Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Identify the noise characteristics. Use the 
coefficients and the command line mode.
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Example 12: A Triangle + A Sine
Analyzing wavelet: db5 

Decomposition levels: 6 

The signal is the sum of a sine having a period of approximately 20 and of a 
“triangle”.

D1 and D2 are very small. This suggests that the signal contains no components 
with periods that are short in relation to the sampling period.

D3 and especially D4 can be attributed to the sine. The jump of the sine from 
A3 to D4 is clearly visible.

The details for the higher levels D5 and D6 are small, especially D5. 

D6 exhibits some edge effects.

A6 contains the triangle, which includes only low frequencies.
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Example 12: A Triangle + A Sine

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Identifying the frequency of a sine

Further exploration • Try using sinusoids whose period is a power of 2.



4 Wavelets in Action: Examples and Case Studies

4-32

Example 13: A Triangle + A Sine + Noise
Noise Analyzing wavelet: db5 

Decomposition levels: 7 

The signal examined here is the same as the previous signal plus a uniform 
white noise divided by 3. The analysis can, therefore, be compared to the 
previous analysis. All differences are due to the presence of the noise.

D1 and D2 are due to the noise.

D3 and especially D4 are due to the sine.

The higher level details are increasingly low, and originate in the noise.

A7 contains a triangle, although it is not as well reconstructed as in the 
previous example.
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Example 13: A Triangle + A Sine + Noise

Addressed topics • Detecting long-term evolution

• Splitting signal components

Further exploration • Increase the amplitude of the noise.

• Replace the triangle by a polynomial.

• Replace the white noise by an ARMA noise.
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Example 14: A Real Electricity Consumption Signal
Analyzing wavelet: db3 

Decomposition levels: 5 

The series presents a peak in the center, followed by two drops, a shallow drop, 
and then a considerably weaker peak.

The details for levels 1 and 2 are of the same order of magnitude and give a good 
expression of the local irregularities caused by the noise. The detail for level 3 
presents high values in the beginning and at the end of the main peak, thus 
allowing us to locate the corresponding drops. The detail D4 shows coarser 
morphological aspects for the series (i.e., three successive peaks). This fits the 
shape of the curve remarkably well, and includes the essential signal 
components for periods of less than 32 time-units. The approximations show 
this effect clearly: A1 and A2 bear a strong resemblance; A3 forms a reasonably 
accurate approximation of the original signal. A look at A4, however, shows 
that a considerable amount of information has been lost.

In this case, as a conclusion, the multiscale aspect is the most interesting and 
the most significant feature: the essential components of the electrical signal 
used to complete the description at 32 time-units (homogeneous to A5) are the 
components with a period between 8 and 16 time-units.
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This signal is explored in much greater detail in “Case Study: An Electrical 
Signal” on page 4-36.

Example 14: A Real Electricity Consumption Signal

Addressed topics • Detecting long-term evolution

• Splitting signal components

• Detecting breakdown points

• Multiscale analysis

Further exploration • Try the same analysis on various sections of the 
signal. Focus on a range other than the 
[3600:3700] shown here.
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Case Study: An Electrical Signal
The goal of this section is to provide a statistical description of an electrical load 
consumption using the wavelet decompositions as a multiscale analysis.

Two problems are addressed. They both deal with signal extraction from the 
load curve corrupted by noise: 

1 What information is contained in the signal, and what pieces of information 
are useful? 

2 Are there various kinds of noises, and can they be distinguished from one 
another?

The context of the study is the forecast of the electrical load. Currently, 
short-term forecasts are based on the data sampled over 30 minutes. After 
eliminating certain components linked to weather conditions, calendar effects, 
outliers and known external actions, a SARIMA parametric model is 
developed. The model delivers forecasts from 30 minutes to 2 days. The quality 
of the forecasts is very high at least for 90% of all days, but the method fails 
when working with the data sampled over 1 minute.

Data and the External Information
The data consist of measurement of a complex, highly aggregated plant: the 
electrical load consumption, sampled minute by minute, over a 5-week period. 
This time series of 50,400 points is partly plotted at the top of the second plot 
in the “Analysis of the End of the Night Period” on page 4-39.

External information is given by electrical engineers, and additional 
indications can be found in several papers. This information, used to define 
reference situations for the purpose of comparison, includes these points:

• The load curve is the aggregation of hundreds of sensors measurements, thus 
generating measurement errors. 

• Roughly speaking, 50% of the consumption is accounted for by industry, and 
the rest by individual consumers. The component of the load curve produced 
by industry has a rather regular profile and exhibits low-frequency changes. 
On the other hand, the consumption of individual consumers may be highly 
irregular, leading to high-frequency components. 

• There are more than 10 million individual consumers. 



Case Study: An Electrical Signal

4-37

• The fundamental periods are the weekly-daily cycles, linked to economic 
rhythms. 

• Daily consumption patterns also change according to rate changes at 
different times (e.g., relay-switched water heaters to benefit from special 
night rates). 

• Missing data have been replaced. 

• Outliers have not been corrected. 

• For the observations 2400 to 3400, the measurement errors are unusually 
high, due to sensors failures.

From a methodological point of view, the wavelet techniques provide a 
multiscale analysis of the signal as a sum of orthogonal signals corresponding 
to different time scales, allowing a kind of time-scale analysis. 

Because of the absence of a model for the 1-minute data, the description 
strategy proceeds essentially by successive uses of various comparative 
methods applied to signals obtained by the wavelet decomposition. 

Without modeling, it is impossible to define a signal or a noise effect. 
Nevertheless, we say that any repetitive pattern is due to signal and is 
meaningful. 

Finally, it is known that two kinds of noise corrupt the signal: sensor errors and 
the state noise.

We shall not report here the complete analysis, which is included in the paper 
[MisMOP94] (see “References” on page 6-152). Instead, we illustrate the 
contribution of wavelet transforms to the local description of time series. We 
choose two small samples: one taken at midday, and the other at the end of the 
night.

In the first period, the signal structure is complex; in the second one, it is much 
simpler. The midday period has a complicated structure because the intensity 
of the electricity consumer activity is high and it presents very large changes. 
At the end of the night, the activity is low and it changes slowly.

For the local analysis, the decomposition is taken up to the level j = 5, because 
25 = 32 is very close to 30 minutes. We are then able to study the components 
of the signal for which the period is less than 30 minutes.
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The analyzing wavelet used here is db3. 

The results are described similarly for the two periods.

Analysis of the Midday Period
This signal (see “Example 14: A Real Electricity Consumption Signal” on 
page 4-34) is also analyzed more crudely in “Example 14: A Real Electricity 
Consumption Signal” on page 4-34.

The shape is a middle mode between 12:30 p.m. and 1:00 p.m., preceded and 
followed by a hollow off-peak, and next a second smoother mode at 1:15 p.m. 
The approximation A5, corresponding to the time scale of 32 minutes, is a very 
crude approximation, particularly for the central mode: there is a peak time lag 
and an underestimation of the maximum value. So at this level, the most 
essential information is missing. We have to look at lower scales (4 for 
instance).

Let us examine the corresponding details.

The details D1 and D2 have small values and may be considered as local 
short-period discrepancies caused by the high-frequency components of sensor 
and state noises. In this bandpass, these noises are essentially due to 
measurement errors and fast variations of the signal induced by millions of 
state changes of personal electrical appliances.

The detail D3 exhibits high values at times corresponding to the start and the 
end of the original middle mode. It allows time localization of the local minima.

The detail D4 contains the main patterns: three successive modes. It is 
remarkably close to the shape of the curve. The ratio of the values of this level 
to the other levels is equal to 5. The detail D5 does not bear much information. 
So the contribution of the level 4 is the highest one, both in qualitative and 
quantitative aspects. It captures the shape of the curve in the concerned period.

In conclusion, with respect to the approximation A5, the detail D4 is the main 
additional correction: the components of a period of 8 to 16 minutes contain the 
crucial dynamics.
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Analysis of the End of the Night Period
The shape of the curve during the end of the night is a slow descent, globally 
smooth, but locally highly irregular. One can hardly distinguish two successive 
local extrema in the vicinity of time t = 1600 and t = 1625. The approximation 
A5 is quite good except at these two modes.

The accuracy of the approximation can be explained by the fact that there 
remains only a low-frequency signal corrupted by noises. The massive and 
simultaneous changes of personal electrical appliances are absent.

The details D1, D2, and D3 show the kind of variation and have, roughly 
speaking, similar shape and mean value. They contain the local short period 
irregularities caused by noises, and the inspection of D2 and D3 allows you to 
detect the local minimum around t =1625.

The details D4 and D5 exhibit the slope changes of the regular part of the 
signal, and A4 and A5 are piecewise linear.
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In conclusion, none of the time scales brings a significant contribution 
sufficiently different from the noise level, and no additional correction is 
needed. The retained approximation is A4 or A5.

All the figures in this paragraph are generated using the graphical user 
interface tools, but the user can also process the analysis using the command 
line mode. The following example corresponds to a command line equivalent for 
producing the figure below.

% Load the original 1-D signal, decompose, reconstruct details in 
% original time and plot.
% Load the signal. 
load leleccum; s = leleccum;

% Decompose the signal s at level 5 using the wavelet db3. 
w = 'db3'; 
[c,l] = wavedec(s,5,w);
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% Reconstruct the details using the decomposition structure. 
for i = 1:5

D(i,:) = wrcoef('d',c,l,w,i);
end

Note  This loop replaces five separate wrcoef statements defining the details. 
The variable D contains the five details.

% Avoid edge effects by suppressing edge values and plot. 
tt = 1+100:length(s)-100; 
subplot(6,1,1); plot(tt,s(tt),'r'); 
title('Electrical Signal and Details'); 
for i = 1:5, subplot(6,1,i+1); plot(tt,D(5-i+1,tt),'g'); end
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Suggestions for Further Analysis
Let us now make some suggestions for possible further analysis starting from 
the details of the decomposition at level 5 of 3 days.

Identify the Sensor Failure
Focus on the wavelet decomposition and try to identify the sensor failure 
directly on the details D1, D2, and D3, and not the other ones. Try to identify 
the other part of the noise.

Indication: see figure below.

−10

0

10

20

d3

2200 2400 2600 2800 3000 3200 3400 3600

−20

−10

0

10

20

d1

200

300

400

500

s

Signal and Details

−10

0

10

20

d2



Case Study: An Electrical Signal

4-43

Suppress the Noise
Suppress measurement noise. Try by yourself and afterwards use the 
de-noising tools.

Indication: study the approximations and compare two successive days, the 
first without sensor failure and the second corrupted by failure (see figure 
below).
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Identify Patterns in the Details
The idea here is to identify a pattern in the details typical of relay-switched 
water heaters.

Indication: the figure below gives an example of such a period. Focus on details 
D2, D3, and D4 around abscissa 1350, 1383, and 1415 to detect abrupt changes 
of the signal induced by automatic switches.
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Locate and Suppress Outlying Values
Suppress the outliers by setting the corresponding values of the details to 0.

Indication: The figure below gives two examples of outliers around  
and . The effect produced on the details is clear when focusing on the 
low levels. As far as outliers are concerned, D1 and D2 are synchronized with s, 
while D3 shows a delayed effect.
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Study Missing Data
Missing data have been crudely substituted (around observation 2870) by the 
estimation of 30 minutes of sampled data and spline smoothing for the 
intermediate time points. You can improve the interpolation by using an 
approximation and portions of the details taken elsewhere, thus implementing 
a sort of “graft.”

Indication: see the figure below focusing around time 2870, and use the small 
variations part of D1 to detect the missing data.
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About Wavelet Packet Analysis
Wavelet Toolbox™ software contains graphical tools and command line 
functions that let you 

• Examine and explore characteristics of individual wavelet packets

• Perform wavelet packet analysis of one- and two-dimensional data

• Use wavelet packets to compress and remove noise from signals and images

This chapter takes you step-by-step through examples that teach you how to 
use the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools. The last 
section discusses how to transfer information from the graphical tools into your 
disk, and back again.

Note  All the graphical user interface tools described in this Chapter let you 
import information from and export information to either disk or workspace. 
For more information see “File Menu Options” on page A-10.

Because of the inherent complexity of packing and unpacking complete wavelet 
packet decomposition tree structures, we recommend using the Wavelet 
Packet 1-D and Wavelet Packet 2-D graphical tools for performing 
exploratory analyses.

The command line functions are also available and provide the same 
capabilities. However, it is most efficient to use the command line only for 
performing batch processing.

Note  For more background on the wavelet packets, you can see the section 
“Wavelet Packets” on page 6-133.

Some object-oriented programming features are used for wavelet packet tree 
structures. For more detail, refer to “Object-Oriented Programming” on 
page B-1.

This chapter takes you through the features of one- and two-dimensional 
wavelet packet analysis using the Wavelet Toolbox software. You’ll learn how 
to
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• Load a signal or image

• Perform a wavelet packet analysis of a signal or image

• Compress a signal

• Remove noise from a signal

• Compress an image

• Show statistics and histograms

The toolbox provides these functions for wavelet packet analysis. For more 
information, see the reference pages. The reference entries for these functions 
include examples showing how to perform wavelet packet analysis via the 
command line.

Some more advanced examples mixing command line and GUI functions can 
be found in the section “Simple Use of Objects Through Four Examples” on 
page B-5.

Analysis-Decomposition Functions.

Synthesis-Reconstruction Functions.

Function Name Purpose

wpcoef Wavelet packet coefficients

wpdec and wpdec2 Full decomposition

wpsplt Decompose packet

Function Name Purpose

wprcoef Reconstruct coefficients

wprec and wprec2 Full reconstruction

wpjoin Recompose packet
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Decomposition Structure Utilities.

De-Noising and Compression.

In the wavelet packet framework, compression and de-noising ideas are exactly 
the same as those developed in the wavelet framework. The only difference is 
that wavelet packets offer a more complex and flexible analysis, because in 
wavelet packet analysis, the details as well as the approximations are split.

Function Name Purpose

besttree Find best tree

bestlevt Find best level tree

entrupd Update wavelet packets entropy

get Get WPTREE object fields contents

read Read values in WPTREE object fields 

wenergy Entropy

wp2wtree Extract wavelet tree from wavelet packet tree

wpcutree Cut wavelet packet tree

Function Name Purpose

ddencmp Default values for de-noising and compression

wpbmpen Penalized threshold for wavelet packet 
de-noising

wpdencmp De-noising and compression using wavelet 
packets

wpthcoef Wavelet packets coefficients thresholding

wthrmngr Threshold settings manager
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A single wavelet packet decomposition gives a lot of bases from which you can 
look for the best representation with respect to a design objective. This can be 
done by finding the “best tree” based on an entropy criterion.

De-noising and compression are interesting applications of wavelet packet 
analysis. The wavelet packet de-noising or compression procedure involves 
four steps:

1 Decomposition

For a given wavelet, compute the wavelet packet decomposition of signal x 
at level N. 

2 Computation of the best tree

For a given entropy, compute the optimal wavelet packet tree. Of course, 
this step is optional. The graphical tools provide a Best Tree button for 
making this computation quick and easy.

3 Thresholding of wavelet packet coefficients

For each packet (except for the approximation), select a threshold and apply 
thresholding to coefficients.

The graphical tools automatically provide an initial threshold based on 
balancing the amount of compression and retained energy. This threshold is 
a reasonable first approximation for most cases. However, in general you 

S

A1 D1

AA2 DA2

AAA3 DAA3

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3
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will have to refine your threshold by trial and error so as to optimize the 
results to fit your particular analysis and design criteria. 

The tools facilitate experimentation with different thresholds, and make it 
easy to alter the tradeoff between amount of compression and retained 
signal energy.

4 Reconstruction

Compute wavelet packet reconstruction based on the original approximation 
coefficients at level N and the modified coefficients.

In this example, we’ll show how you can use one-dimensional wavelet packet 
analysis to compress and to de-noise a signal.
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One-Dimensional Wavelet Packet Analysis
We now turn to the Wavelet Packet 1-D tool to analyze a synthetic signal that 
is the sum of two linear chirps.

Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB® prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

Click the Wavelet Packet 1-D menu item.
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The tool appears on the desktop.

Loading a Signal.

2 From the File menu, choose the Load Signal option.

3 When the Load Signal dialog box appears, select the demo MAT-file 
sumlichr.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.
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The sumlichr signal is loaded into the Wavelet Packet 1-D tool.
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Analyzing a Signal.

4 Make the appropriate settings for the analysis. Select the db2 wavelet, level 
4, entropy threshold, and for the threshold parameter type 1. Click the 
Analyze button.

The available entropy types are listed below.

 Type Description

Shannon Nonnormalized entropy involving the logarithm of 
the squared value of each signal sample — or, more 
formally,

Threshold The number of samples for which the absolute 
value of the signal exceeds a threshold .

Norm The concentration in  norm with .

Log Energy The logarithm of “energy,” defined as the sum over 
all samples: .

si
2 si

2( )log∑–

ε

l p 1 p≤

si
2( )log∑
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For more information about the available entropy types, user-defined entropy, 
and threshold parameters, see the wentropy reference page and “Choosing the 
Optimal Decomposition” on page 6-144.

Note  Many capabilities are available using the command area on the right of 
the Wavelet Packet 1-D window. Some of them are used in the sequel. For a 
more complete description, see “Wavelet Packet Tool Features (1-D and 2-D)” 
on page A-22.

Computing the Best Tree.

Because there are so many ways to reconstruct the original signal from the 
wavelet packet decomposition tree, we select the best tree before attempting to 
compress the signal.

5 Click the Best Tree button.

SURE (Stein’s 
Unbiased Risk 
Estimate)

A threshold-based method in which the threshold 
equals

 

where n is the number of samples in the signal.

User An entropy type criterion you define in an M-file.

 Type Description

2loge nlog2 n( )( )
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After a pause for computation, the Wavelet Packet 1-D tool displays the 
best tree. Use the top and bottom sliders to spread nodes apart and pan over 
to particular areas of the tree, respectively.

Observe that, for this analysis, the best tree and the initial tree are almost 
the same. One branch at the far right of the tree was eliminated.

Pan left or right

Spread or contract tree nodes
to improve readability
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Compressing a Signal Using Wavelet Packets

Selecting a Threshold for Compression.

1 Click the Compress button.

The Wavelet Packet 1-D Compression window appears with an 
approximate threshold value automatically selected.

The leftmost graph shows how the threshold (vertical yellow dotted line) has 
been chosen automatically (1.482) to balance the number of zeros in the 
compressed signal (blue curve that increases as the threshold increases) 
with the amount of energy retained in the compressed signal (purple curve 
that decreases as the threshold increases). 

This threshold means that any signal element whose value is less than 1.482 
will be set to zero when we perform the compression.

Threshold controls are located to the right (see the red box in the figure 
above). Note that the automatic threshold of 1.482 results in a retained 
energy of only 81.49%. This may cause unacceptable amounts of distortion, 
especially in the peak values of the oscillating signal. Depending on your 



5 Using Wavelet Packets

5-14

design criteria, you may want to choose a threshold that retains more of the 
original signal’s energy.

2 Adjust the threshold by typing 0.8938 in the text field opposite the threshold 
slider, and then press the Enter key.

The value 0.8938 is a number that we have discovered through trial and 
error yields more satisfactory results for this analysis.

After a pause, the Wavelet Packet 1-D Compression window displays new 
information.

Note that, as we have reduced the threshold from 1.482 to 0.8938,

- The vertical yellow dotted line has shifted to the left.

- The retained energy has increased from 81.49% to 90.96%.

- The number of zeros (equivalent to the amount of compression) has 
decreased from 81.55% to 75.28%.
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Compressing a Signal.

3 Click the Compress button.

The Wavelet Packet 1-D tool compresses the signal using the thresholding 
criterion we selected.

The original (red) and compressed (yellow) signals are displayed 
superimposed. Visual inspection suggests the compression quality is quite 
good.

Looking more closely at the compressed signal, we can see that the number of 
zeros in the wavelet packets representation of the compressed signal is about 
75.3%, and the retained energy about 91%.

If you try to compress the same signal using wavelets with exactly the same 
parameters, only 89% of the signal energy is retained, and only 59% of the 
wavelet coefficients set to zero. This illustrates the superiority of wavelet 
packets for performing compression, at least on certain signals.

You can demonstrate this to yourself by returning to the main Wavelet Packet 
1-D window, computing the wavelet tree, and then repeating the compression.
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De-Noising a Signal Using Wavelet Packets
We now use the Wavelet Packet 1-D tool to analyze a noisy chirp signal. This 
analysis illustrates the use of Stein’s Unbiased Estimate of Risk (SURE) as a 
principle for selecting a threshold to be used for de-noising.

This technique calls for setting the threshold T to

where n is the length of the signal.

A more thorough discussion of the SURE criterion appears in “Choosing the 
Optimal Decomposition” on page 6-144. For now, suffice it to say that this 
method works well if your signal is normalized in such a way that the data fit 
the model x(t) = f(t) + e(t), where e(t) is a Gaussian white noise with zero mean 
and unit variance.

If you’ve already started the Wavelet Packet 1-D tool and it is active on your 
computer’s desktop, skip ahead to step 3.

Starting the Wavelet Packet 1-D Tool.

1 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

T 2loge nlog2 n( )( )=
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Click the Wavelet Packet 1-D menu item.

The tool appears on the desktop.
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Loading a Signal.

2 From the File menu, choose the Load Signal option.

3 When the Load Signal dialog box appears, select the demo MAT-file 
noischir.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.
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The noischir signal is loaded into the Wavelet Packet 1-D tool. Notice that 
the signal’s length is 1024. This means we should set the SURE criterion 
threshold equal to sqrt(2.*log(1024.*log2(1024))), or 4.2975.

Analyzing a Signal.

4 Make the appropriate settings for the analysis. Select the db2 wavelet, level 
4, entropy type sure, and threshold parameter 4.2975. Click the Analyze 
button.

Signal length
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There is a pause while the wavelet packet analysis is computed.

Note  Many capabilities are available using the command area on the right of 
the Wavelet Packet 1-D window. Some of them are used in the sequel. For a 
more complete description, see “Wavelet Packet Tool Features (1-D and 2-D)” 
on page A-22.

Computing the Best Tree and Performing De-Noising.

5 Click the Best Tree button.

Computing the best tree makes the de-noising calculations more efficient.
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6 Click the De-noise button. This brings up the Wavelet Packet 1-D 
De-Noising window.

7 Click the De-noise button located at the center right side of the Wavelet 
Packet 1-D De-Noising window.

The results of the de-noising operation are quite good, as can be seen by looking 
at the thresholded coefficients. The frequency of the chirp signal increases 
quadratically over time, and the thresholded coefficients essentially capture 
the quadratic curve in the time-frequency plane.
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You can also use the wpdencmp function to perform wavelet packet de-noising 
or compression from the command line.
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Two-Dimensional Wavelet Packet Analysis
In this section, we employ the Wavelet Packet 2-D tool to analyze and 
compress an image of a fingerprint. This is a real-world problem: the Federal 
Bureau of Investigation (FBI) maintains a large database of fingerprints — 
about 30 million sets of them. The cost of storing all this data runs to hundreds 
of millions of dollars. 

“The FBI uses eight bits per pixel to define the shade of gray and stores 500 
pixels per inch, which works out to about 700 000 pixels and 0.7 megabytes per 
finger to store finger prints in electronic form.” (Wickerhauser, see the 
reference [Wic94] p. 387, listed in “References” on page 6-152).

“The technique involves a two-dimensional DWT, uniform scalar quantization 
(a process that truncates, or quantizes, the precision of the floating-point DWT 
output) and Huffman entropy coding (i.e., encoding the quantized DWT output 
with a minimal number of bits).” (Brislawn, see the reference [Bris95] p. 1278, 
listed in “References” on page 6-152).

By turning to wavelets, the FBI has achieved a 15:1 compression ratio. In this 
application, wavelet compression is better than the more traditional JPEG 
compression, as it avoids small square artifacts and is particularly well suited 
to detect discontinuities (lines) in the fingerprint.

Note that the international standard JPEG 2000 will include the wavelets as a 
part of the compression and quantization process. This points out the present 
strength of the wavelets.
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Starting the Wavelet Packet 2-D Tool.

1 From the MATLAB® prompt, type 

wavemenu

The Wavelet Toolbox Main Menu appears.

Click the Wavelet Packet 2-D menu item.
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The tool appears on the desktop.

Loading an Image.

From the File menu, choose the Load Image option.

2 When the Load Image dialog box appears, select the demo MAT-file 
detfingr.mat, which should reside in the MATLAB directory 
toolbox/wavelet/wavedemo. Click the OK button.



5 Using Wavelet Packets

5-26

The fingerprint image is loaded into the Wavelet Packet 2-D tool.

Analyzing an Image.

3 Make the appropriate settings for the analysis. Select the haar wavelet, 
level 3, and entropy type shannon. Click the Analyze button.
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There is a pause while the wavelet packet analysis is computed.

Note  Many capabilities are available using the command area on the right of 
the Wavelet Packet 2-D window. Some of them are used in the sequel. For a 
more complete description, see “Wavelet Packet Tool Features (1-D and 2-D)” 
on page A-22.

4 Click the Best Tree button to compute the best tree before compressing the 
image.
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Compressing an Image Using Wavelet Packets

1 Click the Compress button to bring up the Wavelet Packet 2-D 
Compression window. Select the Bal. sparsity-norm (sqrt) option from 
the Select thresholding method menu.

Notice that the default threshold (7.125) provides about 64% compression 
while retaining virtually all the energy of the original image. Depending on 
your criteria, it may be worthwhile experimenting with more aggressive 
thresholds to achieve a higher degree of compression. Recall that we are not 
doing any quantization of the image, merely setting specific coefficients to 
zero. This can be considered a precompression step in a broader compression 
system.

2 Alter the threshold: type the number 30 in the text field opposite the 
threshold slider located on the right side of the Wavelet Packet 2-D 
Compression window. Then press the Enter key.
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Setting all wavelet packet coefficients whose value falls below 30 to zero 
yields much better results. Note that the new threshold achieves around 
92% of zeros, while still retaining nearly 98% of the image energy. Compare 
this wavelet packet analysis to the wavelet analysis of the same image in 
“Compressing Images” on page 3-26.

3 Click the Compress button to start the compression. 

You can see the result obtained by wavelet packet coefficients thresholding 
and image reconstruction. The visual recovery is correct, but not perfect. The 
compressed image, shown side by side with the original, shows some 
artifacts.

4 Click the Close button located at the bottom of the Wavelet Packet 2-D 
Compression window. Update the synthesized image by clicking Yes when 
the dialog box appears.
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Take this opportunity to try out your own compression strategy. Adjust the 
threshold value, the entropy function, and the wavelet, and see if you can 
obtain better results. 

Hint: The bior6.8 wavelet is better suited to this analysis than is haar, and 
can lead to a better compression ratio. When a biorthogonal wavelet is used, 
then instead of “Retained energy” the information displayed is “Energy ratio.” 
For more information, see “Compression Scores” on page 6-115.

Before concluding this analysis, it is worth turning our attention to the “colored 
coefficients for terminal nodes plot” and considering the best tree 
decomposition for this image.

This plot is shown in the lower right side of the Wavelet Packet 2-D tool. The 
plot shows us which details have been decomposed and which have not. Larger 
squares represent details that have not been broken down to as many levels as 
smaller squares. Consider, for example, this level 2 decomposition pattern:
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Looking at the pattern of small and large squares in the fingerprint analysis 
shows that the best tree algorithm has apparently singled out the diagonal 
details, often sparing these from further decomposition. Why is this?

If we consider the original image, we realize that much of its information is 
concentrated in the sharp edges that constitute the fingerprint’s pattern. 
Looking at these edges, we see that they are predominantly oriented 
horizontally and vertically. This explains why the best tree algorithm has 
“chosen” not to decompose the diagonal details — they do not provide very 
much information.

Approximation, Level 2

Vertical Detail, Level 2

Diagonal Detail, Level 1

Decomposition of the Level 1
Horizontal Detail

Decomposition of the Level 1
Vertical Detail
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Importing and Exporting from Graphical Tools
The Wavelet Packet 1-D and Wavelet Packet 2-D tools let you import 
information from and export information to your disk.

If you adhere to the proper file formats, you can

• Save decompositions as well as synthesized signals and images from the 
wavelet packet graphical tools to disk

• Load signals, images, and one- and two-dimensional decompositions from 
disk into the Wavelet Packet 1-D and Wavelet Packet 2-D graphical tools

Saving Information to Disk
Using specific file formats, the graphical tools let you save synthesized signals 
or images, as well as one- or two-dimensional wavelet packet decomposition 
structures. This feature provides flexibility and allows you to combine 
command line and graphical interface operations. 

Saving Synthesized Signals
You can process a signal in the Wavelet Packet 1-D tool, and then save the 
processed signal to a MAT-file. 

For example, load the example analysis:

File⇒Example Analysis⇒db1 – depth: 2 – ent: shannon −−> sumsin

and perform a compression or de-noising operation on the original signal. 
When you close the Wavelet Packet 1-D De-noising or Wavelet Packet 1-D 
Compression window, update the synthesized signal by clicking Yes in the 
dialog box.

Then, from the Wavelet Packet 1-D tool, select the File⇒Save⇒Synthesized 
Signal menu option.

A dialog box appears allowing you to select a directory and filename for the 
MAT-file. For this example, choose the name synthsig.
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To load the signal into your workspace, simply type

load synthsig
whos

The synthesized signal is given by synthsig. In addition, the parameters of the 
de-noising or compression process are given by the wavelet name (wname) and 
the global threshold (valTHR).

valTHR

valTHR =
    1.9961

Saving Synthesized Images
You can process an image in the Wavelet Packet 2-D tool, and then save the 
processed image to a MAT-file (with extension mat or other). 

For example, load the example analysis: 

File⇒Example Analysis⇒db1 – depth: 1 – ent: shannon −−> woman

and perform a compression on the original image. When you close the Wavelet 
Packet 2-D Compression window, update the synthesized image by clicking 
Yes in the dialog box that appears.

Then, from the Wavelet 2-D tool, select the File⇒Save⇒Synthesized Image 
menu option.

A dialog box appears allowing you to select a directory and filename for the 
MAT-file. For this example, choose the name wpsymage.

Name Size Bytes Class

synthsig 1x1000 8000 double array

valTHR 1x1 8 double array

wname 1x3 6 char array
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To load the image into your workspace, simply type

load wpsymage
whos

The synthesized image is given by X. The variable map contains the associated 
colormap. In addition, the parameters of the de-noising or compression process 
are given by the wavelet name (wname) and the global threshold (valTHR). 

Saving One-Dimensional Decomposition Structures
The Wavelet Packet 1-D tool lets you save an entire wavelet packet 
decomposition tree and related data to your disk. The toolbox creates a 
MAT-file in the current directory with a name you choose, followed by the 
extension wp1 (wavelet packet 1-D).

Open the Wavelet Packet 1-D tool and load the example analysis:

File⇒Example Analysis⇒db1 – depth: 2 – ent: shannon −−> sumsin

To save the data from this analysis, use the menu option File⇒Save 
Decomposition.

A dialog box appears that lets you specify a directory and file name for storing 
the decomposition data. Type the name wpdecex1d.

After saving the decomposition data to the file wpdecex1d.wp1, load the 
variables into your workspace.

load wpdecex1d.wp1 -mat
whos 

Name Size Bytes Class

X 256x256 524288 double array 

map 255x3 6120 double array

valTHR 1x1 8 double array 

wname 1x3 6 char array 
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The variable tree_struct contains the wavelet packet tree structure. The 
variable data_name contains the data name and valTHR contains the global 
threshold, which is currently empty since the synthesized signal does not exist.

Saving Two-Dimensional Decomposition Structures
The file format, variables, and conventions are exactly the same as in the 
one-dimensional case except for the extension, which is wp2 (wavelet packet 
2-D). The variables saved are the same as with the one-dimensional case, with 
the addition of the colormap matrix map:

Save options are also available when performing de-noising or compression 
inside the Wavelet Packet 1-D and Wavelet Packet 2-D tools. 

In the Wavelet Packet De-Noising windows, you can save the de-noised signal 
or image and the decomposition. The same holds true for the Wavelet Packet 
Compression windows.

This way, you can save directly many different trials from inside the 
De-Noising and Compression windows without going back to the main Wavelet 
Packet windows during a fine-tuning process.

Name Size Bytes Class 

data_name 1x6 12 char array

tree_struct 1x1 11176 wptree object

valTHR 0x0 0 double array 

Name Size Bytes Class

data_name 1x5 10 char array 

map 255x3 6120 double array

tree_struct 1x1 527400 wptree object

valTHR 1x1 8 double array
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Note  When saving a synthesized signal (1-D), a synthesized image (2-D) or a 
decomposition to a MAT-file, the extension of this file is free. The mat 
extension is not necessary.

Loading Information into the Graphical Tools
You can load signals, images, or one- and two-dimensional wavelet packet 
decompositions into the graphical interface tools. The information you load 
may have been previously exported from the graphical interface, and then 
manipulated in the workspace, or it may have been information you generated 
initially from the command line. 

In either case, you must observe the strict file formats and data structures used 
by the graphical tools, or else errors will result when you try to load 
information.

Loading Signals
To load a signal you’ve constructed in your MATLAB® workspace into the 
Wavelet Packet 1-D tool, save the signal in a MAT-file (with extension mat or 
other). 

For instance, suppose you’ve designed a signal called warma and want to 
analyze it in the Wavelet Packet 1-D tool.

save warma warma

The workspace variable warma must be a vector.

sizwarma = size(warma)

sizwarma =
           1        1000

To load this signal into the Wavelet Packet 1-D tool, use the menu option 
File⇒Load Signal.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.
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Note  The first one-dimensional variable encountered in the file is considered 
the signal. Variables are inspected in alphabetical order.

Loading Images
This toolbox supports only indexed images. An indexed image is a matrix 
containing only integers from 1 to n, where n is the number of colors in the 
image. 

This image may optionally be accompanied by a n-by-3 matrix called map. This 
is the colormap associated with the image. When MATLAB displays such an 
image, it uses the values of the matrix to look up the desired color in this 
colormap. If the colormap is not given, the Wavelet Packet 2-D graphical tool 
uses a monotonic colormap with max(max(X)) min(min(X))+1 colors.

To load an image you’ve constructed in your MATLAB workspace into the 
Wavelet Packet 2-D tool, save the image (and optionally, the variable map) in 
a MAT-file (with extension mat or other). 

For instance, suppose you’ve created an image called brain and want to 
analyze it in the Wavelet Packet 2-D tool. Type

X = brain;
map = pink(256);
save myfile X map

To load this image into the Wavelet Packet 2-D tool, use the menu option 
File⇒Load Image.

A dialog box appears that lets you select the appropriate MAT-file to be loaded.

Note  The first two-dimensional variable encountered in the file (except the 
variable map, which is reserved for the colormap) is considered the image. 
Variables are inspected in alphabetical order.
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Caution The graphical tools allow you to load an image that does not contain 
integers from 1 to n. The computations will be correct since they act directly 
on the matrix, but the display of the image will be strange. The values less 
than 1 will be evaluated as 1, the values greater than n will be evaluated as n, 
and a real value within the interval [1,n] will be evaluated as the closest 
integer.

Note that the coefficients, approximations, and details produced by wavelet 
packets decomposition are not indexed image matrices. To display these 
images in a suitable way, the Wavelet Packet 2-D tool follows these rules:

• Reconstructed approximations are displayed using the colormap map. The 
same holds for the result of the reconstruction of selected nodes.

• The coefficients and the reconstructed details are displayed using the 
colormap map applied to a rescaled version of the matrices.

Loading Wavelet Packet Decomposition Structures
You can load one- and two-dimensional wavelet packet decompositions into the 
graphical tools providing you have previously saved the decomposition data in 
a MAT-file of the appropriate format.

While it is possible to edit data originally created using the graphical tools and 
then exported, you must be careful about doing so. Wavelet packet data 
structures are complex, and the graphical tools do not do any consistency 
checking. This can lead to errors if you try to load improperly formatted data.

One-dimensional data file contains the following variables:

Variable Status Description

tree_struct Required Object specifying the tree structure

data_name Optional String specifying the name of the 
decomposition

valTHR Optional Global threshold (can be empty if neither 
compression nor de-noising has been done)
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These variables must be saved in a MAT-file (with extension wp1 or other).

Two-dimensional data file contains the following variables:

These variables must be saved in a MAT-file (with extension wp2 or other).

To load the properly formatted data, use the menu option File⇒Load 
Decomposition Structure from the appropriate tool, and then select the 
desired MAT-file from the dialog box that appears.

The Wavelet Packet 1-D or 2-D graphical tool then automatically updates its 
display to show the new analysis.

Note  When loading a signal (1-D), an image (2-D), or a decomposition (1-D or 
2-D) from a MAT-file, the extension of this file is free. The mat extension is not 
necessary.

Variable Status Description

tree_struct Required Object specifying the tree structure

data_name Optional String specifying the name of the 
decomposition

map Optional Image map

valTHR Optional Global threshold (can be empty if neither 
compression nor de-noising has been done)
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Advanced Concepts

This chapter presents a more advanced treatment of wavelet methods, and focuses on real wavelets, 
except in the two sections dedicated to wavelet families.

Mathematical Conventions (p. 6-2) Conventions used in this section

General Concepts (p. 6-5) Introduction to general concepts

The Fast Wavelet Transform (FWT) 
Algorithm (p. 6-20)

Fast wavelet transform

Dealing with Border Distortion (p. 6-36) Using wavelets to deal with border distortion

Discrete Stationary Wavelet Transform 
(SWT) (p. 6-46)

Discrete stationary wavelet transform

Lifting Method for Constructing Wavelets 
(p. 6-53)

Lifting schemes

Frequently Asked Questions (p. 6-63) FAQ

Wavelet Families: Additional Discussion 
(p. 6-73)

More information on wavelet families

Wavelet Applications: More Detail (p. 6-94) More details on wavelet applications

Wavelet Packets (p. 6-133) Information about wavelet packets

References (p. 6-152) References
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Mathematical Conventions
This chapter and the reference pages use certain mathematical conventions.

General Notation Interpretation

Dyadic scale.  is the level, 1/  or  is the 
resolution.

Dyadic translation

Continuous time

 or Discrete time

Pixel

Signal or image. The signal is a function defined on 
 or ; the image is defined on  or .

Fourier transform of the function f or the sequence f 

Continuous Time

Set of signals of finite energy

Energy of the signal 

Scalar product of signals  and 

Set of images of finite energy

Energy of the image 

Scalar product of images and 

Discrete Time

a 2j
= j Z∈, j a 2 j–

b ka= k Z∈,

t

k n

i j,( )

s
R Z R2 Z2

f
ˆ

L2 R( )

s2 x( ) xd
R
∫

s

s s′,〈 〉 s x( )s′ x( ) xd
R
∫=

s s′

L2 R2( )

R∫ s2 x y,( ) xd yd
R∫

s

s s′,〈 〉 s x y,( )s′ x y,( ) xd yd
R
∫

R
∫=

s s′



Mathematical Conventions

6-3

Set of signals of finite energy

Energy of the signal 

Scalar product of signals and 

Set of images of finite energy

Energy of the image 

Scalar product of images  and 

General Notation Interpretation (Continued)

l2 Z( )

s2 n( )
n Z∈

∑ s

s s′,〈 〉 s n( )s′ n( )
n Z∈∑=

s s′

l2 Z2( )

n Z∈∑ s2 n m,( )
m Z∈∑

s

s s′,〈 〉 s n m,( )s′ n m,( )
m Z∈

∑
n Z∈

∑=
s s′

Wavelet Notation Interpretation

Aj j-level approximation or approximation at level j

Dj j-level detail or detail at level j

φ Scaling function

ψ Wavelet

Family associated with the one-dimensional wavelet, 
indexed by  and 

Family associated with the two-dimensional wavelet, 
indexed by 

Family associated with the one-dimensional scaling 
function for dyadic scales ; it should 
be noted that .

1
a

-------ψ x b–
a

------------⎝ ⎠
⎛ ⎞

a 0> b R∈

1
a1a2

-----------------ψ
x1 b1–

a1
------------------

x2 b2–

a2
------------------,⎝ ⎠

⎛ ⎞ x x1 x2( , )= R2∈, a1 0 a2 0 b1 R b2 R∈,∈,>,>

φj k, x( ) 2 j– 2⁄ φ 2 j– x k–( )= j Z∈ k Z∈, ,
a 2j,b ka= =

φ φ0 0,=
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Family associated with the one-dimensional  for 
dyadic scales ; it should be noted that 

.

Scaling filter associated with a wavelet

Wavelet filter associated with a wavelet

Wavelet Notation Interpretation

ψj k, x( ) 2 j– 2⁄ ψ 2 j– x k–( )= j Z∈ k Z∈, , ψ
a 2j,b ka= =

ψ ψ0 0,=

hk( ) k Z∈,

gk( ) k Z∈,
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General Concepts
This section presents a brief overview of wavelet concepts, focusing mainly on 
the orthogonal wavelet case. It includes the following sections:

• “Wavelets: A New Tool for Signal Analysis”

• “Wavelet Decomposition: A Hierarchical Organization” on page 6-5

• “Finer and Coarser Resolutions” on page 6-6

• “Wavelet Shapes” on page 6-6

• “Wavelets and Associated Families” on page 6-8

• “Wavelet Transforms: Continuous and Discrete” on page 6-13

• “Local and Global Analysis” on page 6-15

• “Synthesis: An Inverse Transform” on page 6-16

• “Details and Approximations” on page 6-16

Wavelets: A New Tool for Signal Analysis
Wavelet analysis consists of decomposing a signal or an image into a 
hierarchical set of approximations and details. The levels in the hierarchy often 
correspond to those in a dyadic scale.

From the signal analyst’s point of view, wavelet analysis is a decomposition of 
the signal on a family of analyzing signals, which is usually an orthogonal 
function method. From an algorithmic point of view, wavelet analysis offers a 
harmonious compromise between decomposition and smoothing techniques.

Wavelet Decomposition: A Hierarchical 
Organization
Unlike conventional techniques, wavelet decomposition produces a family of 
hierarchically organized decompositions. The selection of a suitable level for 
the hierarchy will depend on the signal and experience. Often the level is 
chosen based on a desired low-pass cutoff frequency.

At each level j, we build the j-level approximation Aj, or approximation at level 
j, and a deviation signal called the j-level detail Dj, or detail at level j. We can 
consider the original signal as the approximation at level 0, denoted by A0. The 
words approximation and detail are justified by the fact that A1 is an 
approximation of A0 taking into account the low frequencies of A0, whereas the 
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detail D1 corresponds to the high frequency correction. Among the figures 
presented in the section “Reconstructing Approximations and Details” on 
page 1-30, one of them graphically represents this hierarchical decomposition.

One way of understanding this decomposition consists of using an optical 
comparison. Successive images A1, A2, A3 of a given object are built. We use the 
same type of photographic devices, but with increasingly poor resolution. The 
images are successive approximations; one detail is the discrepancy between 
two successive images. Image A2 is, therefore, the sum of image A4 and 
intermediate details D4, D3:

Finer and Coarser Resolutions
The organizing parameter, the scale a, is related to level j by . If we 
define resolution as 1/a, then the resolution increases as the scale decreases. 
The greater the resolution, the smaller and finer are the details that can be 
accessed.

From a technical point of view, the size of the revealed details for any j is 
proportional to the size of the domain in which the wavelet or analyzing 

function of the variable x,  is not too close to 0. 

Wavelet Shapes
One-dimensional analysis is based on one scaling function φ and one wavelet ψ. 
Two-dimensional analysis (on a square or rectangular grid) is based on one 
scaling function  and three wavelets. 

The following figure shows φ and ψ for each wavelet, except the Morlet wavelet 
and the Mexican hat, for which φ does not exist. All the functions decay quickly 
to zero. The Haar wavelet is the only noncontinuous function with three points 
of discontinuity (0, 0.5, 1). The ψ functions oscillate more than associated φ 

j 10 9 ... 2 1 0 -1 -2

Scale 1024 512 ... 4 2 1 1/2 1/4

Resolution 1/210 1/29 ... 1/4 1/2 1 2 4

A2 A3 D3 A4 D4 D3+ +=+=

a 2j
=

ψ x
a
---⎝ ⎠
⎛ ⎞

φ x1 x2,( )
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functions. coif2 exhibits some angular points; db6 and sym6 are quite smooth. 
The Morlet and Mexican hat wavelets are symmetrical.

Figure 6-1  Various One-Dimensional Wavelets
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Wavelets and Associated Families
In the one-dimensional context, we distinguish the wavelet ψ from the 
associated function φ, called the scaling function. Some properties of ψ and φ 
are

• The integral of ψ is zero, , and ψ is used to define the details. 

• The integral of φ is 1, , and φ is used to define the 
approximations.

The usual two-dimensional wavelets are defined as tensor products of 
one-dimensional wavelets:  is the scaling function and 

 are the three 
wavelets.

The following figure shows the four functions associated with the 
two-dimensional coif2 wavelet.

ψ x( ) xd∫ 0=( )
φ x( ) xd∫ 1=( )

φ x y,( ) φ x( )φ y( )=
ψ1 x y,( ) φ x( )ψ y( ),ψ2 x y,( ) ψ x( )φ y( ),ψ3 x y,( ) ψ x( )ψ y( )===
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Figure 6-2:  Two-Dimensional coif2 Wavelet

To each of these functions, we associate its doubly indexed family, which is 
used to

• Move the basic shape from one side to the other, translating it to position b 
(see the following figure).

• Keep the shape while changing the one-dimensional time scale a ( ) (see 
Figure 6-4 on page 6-11).

So a wavelet family member has to be thought of as a function located at a 
position b, and having a scale a. 

In one-dimensional situations, the family of translated and scaled wavelets 
associated with ψ is expressed as follows.

a 0>
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Figure 6-3:  Translated Wavelets

Translation Change of Scale Translation and Change of Scale

ψ(x-b) 1
a

-------ψ x
a
---⎝ ⎠
⎛ ⎞ 1

a
-------ψ x b–

a
------------⎝ ⎠
⎛ ⎞

b = 8 b = 0 b = -8

db3(x + 8) db3(x) db3(x - 8)
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Figure 6-4:  Time Scaled One-Dimensional Wavelet

In a two-dimensional context, we have the translation by vector  and a 
change of scale of parameter .

Translation and change of scale become

In most cases, we will limit our choice of a and b values by using only the 
following discrete set (coming back to the one-dimensional context):

Let us define

We now have a hierarchical organization similar to the organization of a 
decomposition; this is represented in the example of Figure 6-5, Wavelets 
Organization. Let k = 0 and leave the translations aside for the moment. The 
functions associated with j = 0, 1, 2, 3 for φ (expressed as φj,0) and with j = 1, 2, 
3 for ψ (expressed as ψj,0) are displayed in the following figure for the db3 
wavelet.

a = 0.5 a = 1 a = 2

db3(x) db3(x/2 - 7)db3(2x + 7)

b1 b2( , )
a1 a2( , )

1
a1a2

-----------------ψ  
x1 b1–

a1
------------------

x2 b2–

a2
------------------ ,⎝ ⎠

⎛ ⎞  where x x1 x2( , ) R
2∈=( )

j k( , ) Z2∈  : a 2j
,= b k2j ka= =

j k( , ) Z2∈  : ψj k, 2 j 2⁄– ψ 2 j– x k–( )  φj k, 2 j 2⁄– φ 2 j– x k–( )=,=



6 Advanced Concepts

6-12

Figure 6-5:  Wavelets Organization

In Figure 6-5, Wavelets Organization, the four-level decomposition is shown, 
progressing from the top to the bottom. We find φ0,0; then 21/2φ1,0, 21/2ψ1,0; then 
2φ2,0, 2ψ2,0; then 23/2φ3,0, 23/2ψ3,0. The wavelet is db3.
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Wavelet Transforms: Continuous and Discrete
The wavelet transform of a signal s is the family C(a,b), which depends on two 
indices a and b. The set to which a and b belong is given below in the table. The 
studies focus on two transforms:

• Continuous transform

• Discrete transform

From an intuitive point of view, the wavelet decomposition consists of 
calculating a “resemblance index” between the signal and the wavelet located 
at position b and of scale a. If the index is large, the resemblance is strong, 
otherwise it is slight. The indexes C(a,b) are called coefficients.

We define the coefficients in the following table. We have two types of analysis 
at our disposal.

Next we will illustrate the differences between the two transforms, for the 
analysis of a fractal signal (see the following figure).

Continuous Time Signal
Continuous Analysis

Continuous Time Signal
Discrete Analysis

C a b,( ) s t( ) 1
a

-------ψ t b–
a

-----------⎝ ⎠
⎛ ⎞ td

R
∫= C a b,( ) s t( ) 1

a
-------ψ t b–

a
-----------⎝ ⎠
⎛ ⎞ td

R
∫=

a R+ 0{ }–∈ b R∈, a 2j
= b k2j

= j k( , ) Z2∈, ,
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Figure 6-6:  Continuous Versus Discrete Transform

Using a redundant representation close to the so-called continuous analysis, 
instead of a nonredundant discrete time-scale representation, can be useful for 
analysis purposes. The nonredundant representation is associated with an 
orthonormal basis, whereas the redundant representation uses much more 
scale and position values than a basis. For a classical fractal signal, the 
redundant methods are quite accurate.

• Graphic representation of discrete analysis: (in the middle of Figure 6-6, 
Continuous Versus Discrete Transform) time is on the abscissa and on the 
ordinate the scale a is dyadic: 21, 22, 23, 24, and 25 (from the bottom to the 
top), levels are 1, 2, 3, 4, and 5. Each coefficient of level k is repeated 2k times.

• Graphic representation of continuous analysis: (at the bottom of 
Figure 6-6, Continuous Versus Discrete Transform) time is on the abscissa 
and on the ordinate the scale varies almost continuously between 21 and 25 
by step 1 (from the bottom to the top). Keep in mind that when a scale is 
small, only small details are analyzed, as in a geographical map.
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Local and Global Analysis
A small scale value permits us to perform a local analysis; a large scale value 
is used for a global analysis. Combining local and global is a useful feature of 
the method. Let us be a bit more precise about the local part and glance at the 
frequency domain counterpart.

Imagine that the analyzing function φ or ψ is zero outside of a domain U, which 
is contained in a disk of radius ρ: . The wavelet ψ is localized. 
The signal s and the function ψ are then compared in the disk, taking into 
account only the t values in the disk. The signal values, which are located 
outside of the domain U, do not influence the value of the coefficient

The same argument holds when ψ is translated to position b and the 
corresponding coefficient analyzes s around b. So this analysis is local.

The wavelets having a compact support are used in local analysis. This is the 
case for Haar and Daubechies wavelets, for example. The wavelets whose 
values are considered as very small outside a domain U can be used with 
caution, as if they were in fact actually zero outside U. Not every wavelet has 
a compact support. This is the case, for instance, of the Meyer wavelet.

The previous localization is temporal, and is useful in analyzing a temporal 
signal (or spatial signal if analyzing an image). The good spectral domain 
localization is a second type of a useful property. A result (linked to the 
Heisenberg uncertainty principle) links the dispersion of the signal f and the 
dispersion of its Fourier transform , and therefore of the dispersion of ψ and 

. The product of these dispersions is always greater than a constant c (which 
does not depend on the signal, but only on the dimension of the space). So it is 
impossible to reduce arbitrarily both time and frequency localization. 

In the Fourier and spectral analysis, the basic function is . 
This function is not a time localized function. The support is R. Its Fourier 
transform  is a generalized function concentrated at point .

The function f is very poorly localized in time, but  is perfectly localized in 
frequency. The wavelets generate an interesting “compromise” on the supports, 
and this compromise differs from that of complex exponentials, sine, or cosine.

ψ u( ) = 0, u∀ U∉

s t( )ψ t( ) t  and we get  s t( )ψ t( ) td
R∫ s t( )ψ t( ) td

U∫=d
R∫

fˆ

ψ̂

f x( ) exp iωx( )=

fˆ ω

fˆ
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Synthesis: An Inverse Transform
In order to be efficient and useful, a method designed for analysis also has to 
be able to perform synthesis. The wavelet method achieves this.

The analysis starts from s and results in the coefficients C(a,b). The synthesis 
starts from the coefficients C(a,b) and reconstructs s. Synthesis is the 
reciprocal operation of analysis.

For signals of finite energy, there are two formulas to perform the inverse 
wavelet transform:

• Continuous synthesis:

 where  is a constant depending on ψ.

• Discrete synthesis:

Of course, the previous formulas need some hypotheses on the  function. 
More precisely, see “What Functions Are Candidates to Be a Wavelet?” on 
page 6-65 for the continuous synthesis formula and “Why Does Such an 
Algorithm Exist?” on page 6-29 for the discrete one.

Details and Approximations
The equations for continuous and discrete synthesis are of considerable 
interest and can be read in order to define the detail at level j:

1 Let us fix j and sum on k. A detail is nothing more than the function

2 Now, let us sum on j. The signal is the sum of all the details:

s t( ) 1
Kψ

-------
R+∫ C a b,( ) 1

a
-------ψ t b–

a
-----------⎝ ⎠
⎛ ⎞  da  db

a2
------------------

R
∫=

Kψ

s t( ) C j k,( )ψj k, t( ).
k Z∈
∑

j Z∈
∑=

ψ

Dj

Dj t( ) C j k( , )ψj k, t( ).
k Z∈
∑=
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The details have just been defined. Take a reference level called J. There are 
two sorts of details. Those associated with indices  correspond to the scales 

 which are the fine details. The others, which correspond to j > J, 
are the coarser details.

We group these latter details into

which defines what is called an approximation of the signal s. We have just 
created the details and an approximation. They are connected. The equality

signifies that s is the sum of its approximation AJ and of its fine details. From 
the previous formula, it is obvious that the approximations are related to one 
another by

For an orthogonal analysis, in which the ψj,k is an orthonormal family,

• AJ is orthogonal to DJ, DJ-1, DJ-2, ...

• s is the sum of the two orthogonal signals: AJ and 

•

• AJ is an approximation of s. The quality (in energy) of the approximation of s
by AJ is

•

s Djj Z∈∑=

j J≤
a 2j 2J≤=

AJ Dj
j J>
∑=

s AJ Dj
j J≤
∑+=

AJ 1– AJ DJ+=

Dj
j J≤
∑

Dj Dk   for   j k≠⊥

qualJ

AJ
2

s 2
--------------=

qualJ 1– qualJ

DJ
2

s 2
--------------- qualJ≥+=
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The following table contains definitions of details and approximations.

From a graphical point of view, when analyzing a signal, it is always valuable 
to represent the different signals (s, Aj, Dj) and coefficients (C(j,k)).

Let us consider the following figure. On the left side, s is the signal; a5, a4, a3, 
a2, and a1 are the approximations at levels 5, 4, 3, 2, and 1. The best 
approximation is a1; the next one is a2, and so on. Noise oscillations are 
exhibited in a1, whereas a5 is smoother.

On the right side, cfs represents the coefficients (for more information, see 
“Wavelet Transforms: Continuous and Discrete” on page 6-13), s is the signal, 
and d5, d4, d3, d2, and d1 are the details at levels 5, 4, 3, 2, and 1.

The different signals that are presented exist in the same time grid. We can 
consider that the t index of detail D4(t) identifies the same temporal instant as 
that of the approximation A5(t) and that of the signal s(t). This identity is of 
considerable practical interest in understanding the composition of the signal, 
even if the wavelet sometimes introduces dephasing.

Definition of the detail at level j 

The signal is the sum of its details

The approximation at level J

Link between AJ-1 and AJ AJ-1 = AJ + DJ 

Several decompositions

Dj t( ) C j k( , )ψj k, t( )
k Z∈∑=

s Djj Z∈∑=

AJ Djj J>∑=

s AJ Djj J≤∑+=
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Figure 6-7:  Approximations, Details, and Coefficients
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The Fast Wavelet Transform (FWT) Algorithm 
In 1988, Mallat produced a fast wavelet decomposition and reconstruction 
algorithm [Mal89]. The Mallat algorithm for discrete wavelet transform (DWT) 
is, in fact, a classical scheme in the signal processing community, known as a 
two channel subband coder using conjugate quadrature filters or quadrature 
mirror filters (QMF).

• The decomposition algorithm starts with signal s, next calculates the 
coordinates of A1 and D1, and then those of A2 and D2, and so on.

• The reconstruction algorithm called the inverse discrete wavelet transform 
(IDWT) starts from the coordinates of AJ and DJ, next calculates the 
coordinates of AJ-1, and then using the coordinates of AJ-1 and DJ-1 
calculates those of AJ-2, and so on.

This section addresses the following topics:

• “Filters Used to Calculate the DWT and IDWT”

• “Algorithms” on page 6-24

• “Why Does Such an Algorithm Exist?” on page 6-29

• “One-Dimensional Wavelet Capabilities” on page 6-33

• “Two-Dimensional Wavelet Capabilities” on page 6-34

Filters Used to Calculate the DWT and IDWT
For an orthogonal wavelet, in the multiresolution framework (see [Dau92] in 
Chapter 5, “Using Wavelet Packets”), we start with the scaling function φ and 
the wavelet function ψ. One of the fundamental relations is the twin-scale 
relation (dilation equation or refinement equation):

All the filters used in DWT and IDWT are intimately related to the sequence

1
2
---φ x

2
---⎝ ⎠
⎛ ⎞ wnφ x n–( )

n Z∈
∑=

wn( )
n Z∈
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Clearly if φ is compactly supported, the sequence (wn) is finite and can be 
viewed as a filter. The filter W, which is called the scaling filter 
(nonnormalized), is

• Finite Impulse Response (FIR)

• Of length 2N

• Of sum 1

• Of norm 

• A low-pass filter

For example, for the db3 scaling filter,

load db3 
db3

db3 =
0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

1.0000

norm(db3)
ans =

0.7071

From filter W, we define four FIR filters, of length 2N and of norm 1, organized 
as follows.

The four filters are computed using the following scheme.

Filters Low-Pass High-Pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

1
2

-------
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where qmf is such that Hi_R and Lo_R are quadrature mirror filters (i.e., 
Hi_R(k) = (-1) k Lo_R(2N + 1 - k)) for k = 1, 2, ..., 2N.

Note that wrev flips the filter coefficients. So Hi_D and Lo_D are also 
quadrature mirror filters. The computation of these filters is performed using 
orthfilt. Next, we illustrate these properties with the db6 wavelet. The plots 
associated with the following commands are shown in Figure 6-8 on page 6-23.

% Load scaling filter.
load db6; w = db6; 
subplot(421); stem(w); title('Original scaling filter');

% Compute the four filters.
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w); 
subplot(423); stem(Lo_D); 
title('Decomposition low-pass filter Lo{\_}D'); 
subplot(424); stem(Hi_D); 
title('Decomposition high-pass filter Hi{\_}D'); 
subplot(425); stem(Lo_R); 
title('Reconstruction low-pass filter Lo{\_}R'); 
subplot(426); stem(Hi_R); 
title('Reconstruction high-pass filter Hi{\_}R');

% High and low frequency illustration.
n = length(Hi_D);
freqfft = (0:n-1)/n;
nn = 1:n;
N = 10*n;

Lo_R =  
norm(W)

 

Lo_D = wrev(Lo_R)

Hi_D = wrev(Hi_R)

W

W

Hi_R = qmf (Lo_R)
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for k=1:N
lambda(k) = (k-1)/N;
XLo_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Lo_D';
XHi_D(k) = exp(-2*pi*j*lambda(k)*(nn-1))*Hi_D';

end
fftld = fft(Lo_D);
ffthd = fft(Hi_D);
subplot(427); plot(lambda,abs(XLo_D),freqfft,abs(fftld),'o'); 
title('Transfer modulus: lowpass (Lo{\_}D or Lo{\_}R') 
subplot(428); plot(lambda,abs(XHi_D),freqfft,abs(ffthd),'o'); 
title('Transfer modulus: highpass (Hi{\_}D or Hi{\_}R') 

Figure 6-8:  The Four Wavelet Filters for db6
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Algorithms
• Given a signal s of length N, the DWT consists of log2N stages at most. 

Starting from s, the first step produces two sets of coefficients: 
approximation coefficients cA1, and detail coefficients cD1. These vectors are 
obtained by convolving s with the low-pass filter Lo_D for approximation, 
and with the high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is

The length of each filter is equal to 2n. If N= length (s), the signals F and G are 
of length N+ 2n - 1, and then the coefficients cA1 and cD1 are of length

The next step splits the approximation coefficients cA1 in two parts using the 
same scheme, replacing s by cA1 and producing cA2 and cD2, and so on.

s

Lo_D

Hi_D

high-pass filter

F

G

downsample

downsample approximation

cA1

cD1

2

detail

low-pass filter

2

where

2

X Convolve with filter X.

Keep the even indexed elements
(see dyaddown). 

 coefficients

coefficients

floor
N 1–( )

2
------------------- n+⎝ ⎠
⎛ ⎞
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So the wavelet decomposition of the signal s analyzed at level j has the 
following structure: [cAj, cDj, ..., cD1].

This structure contains for J = 3 the terminal nodes of the following tree.

• Conversely, starting from cAj and cDj, the IDWT reconstructs cAj-1, inverting 
the decomposition step by inserting zeros and convolving the results with the 
reconstruction filters.

One-Dimensional DWT

Decomposition Step

Lo_D

Hi_D

cAj

2

Initialization

Convolve with filter X.

Downsample.

cA0 = s.

where

2

2

X

cAj+1

cDj+1

level j+1
level j

s

cD1cA1

cD2cA2

cD3cA3
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• For images, a similar algorithm is possible for two-dimensional wavelets and 
scaling functions obtained from one-dimensional wavelets by tensorial 
product.

This kind of two-dimensional DWT leads to a decomposition of 
approximation coefficients at level j in four components: the approximation 
at level j + 1 and the details in three orientations (horizontal, vertical, and 
diagonal).

The following charts describe the basic decomposition and reconstruction 
steps for images.

cAj-1

Lo_R

Hi_R

high-passupsample

upsample

cAj

cDj

2

level j

low-pass

where 2

X Convolve with filter X.

Insert zeros at odd-indexed elements.

Take the central part of U with the 

2

wkeep

wkeep
convenient length.

level j-1

One-Dimensional IDWT

Reconstruction Step
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Two-Dimensional DWT

Decomposition Step

rows

Lo_D

Hi_D

rows

cAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns.

Downsample rows: keep the even indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

CA0 = s for the decomposition initialization.

where

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows
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So, for J = 2, the two-dimensional wavelet tree has the following form.

Two-Dimensional IDWT
Reconstruction Step

cAj

columns

Upsample columns: insert zeros at odd-indexed columns.

Upsample rows: insert zeros at odd-indexed rows.

Convolve with filter X the rows of the entry.

Convolve with filter X the columns of the entry.

where

21

21

21

21

2 1

21

X

columns

Hi_R

Lo_R

X

columns

columns

Hi_R

Lo_R

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

columns

rows

rows

Lo_R

Hi_R

rows

2 1

2 1

wkeep

cD
(h)
1 cD

(d)
1 cD

(v)
1

cA2 cD
(h)
2 cD

(d)
2

cD
(v)
2

s

cA1
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Finally, let us mention that, for biorthogonal wavelets, the same algorithms 
hold but the decomposition filters on one hand and the reconstruction filters on 
the other hand are obtained from two distinct scaling functions associated with 
two multiresolution analyses in duality.

In this case, the filters for decomposition and reconstruction are, in general, of 
different odd lengths. This situation occurs, for example, for “splines” 
biorthogonal wavelets used in the toolbox. By zero-padding, the four filters can 
be extended in such a way that they will have the same even length.

Why Does Such an Algorithm Exist?
The previous paragraph describes algorithms designed for finite-length signals 
or images. To understand the rationale, we must consider infinite-length 
signals. The methods for the extension of a given finite-length signal are 
described in the section “Dealing with Border Distortion” on page 6-36.

Let us denote h = Lo_R and g = Hi_R and focus on the one-dimensional case.

We first justify how to go from level j to level j+1, for the approximation vector. 
This is the main step of the decomposition algorithm for the computation of the 
approximations. The details are calculated in the same way using the filter g 
instead of filter h.

Let  be the coordinates of the vector Aj:

and  the coordinates of the vector Aj+1:

 is calculated using the formula

This formula resembles a convolution formula.

The computation is very simple. 

Ak
j( )( )k Z∈

Aj Ak
j( )φj k,

k
∑=

Ak
j 1+( )

Aj 1+ Ak
j 1+( )φj 1+ k,

k
∑=

Ak
j 1+( )

Ak
j 1+( ) hn 2k–  A

n
j( )

n
∑=
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Let us define

The sequence  is the filtered output of the sequence  by the filter .

We obtain

We have to take the even index values of F. This is downsampling.

The sequence  is the downsampled version of the sequence .

The initialization is carried out using , where s(k) is the signal 
value at time k. 

There are several reasons for this surprising result, all of which are linked to 
the multiresolution situation and to a few of the properties of the functions φj,k 
and ψj,k. 

Let us now describe some of them.

1 The family  is formed of orthonormal functions. As a 
consequence for any j, the family  is orthonormal. 

2 The double indexed family  is orthonormal. 

3 For any j, the  are orthogonal to .

4 Between two successive scales, we have a fundamental relation, called the 
twin-scale relation.

This relation introduces the algorithm’s h filter ( ). For more 
information, see the section “Filters Used to Calculate the DWT and IDWT” on 
page 6-20.

Twin-Scale Relation for φ

h
˜

k( ) h k–( )= , and  Fk
j 1+( ) h

˜
k n–  An

j( )

n
∑=

F j 1+( ) A j( ) h˜

Ak
j 1+( ) F2k

j 1+( )
=

A j 1+( ) F j 1+( )

Ak
0( ) s k( )=

φ0 k, k Z∈,( )
φj k, k Z∈,( )

ψj k, j Z∈ k Z∈, ,( )

φj k, k Z∈,( ) ψj ′ k, j′ j≤ k Z∈, ,( )

φ1 0, hkφ0 k,
k Z∈
∑= φj 1+ 0, hkφj k,

k Z∈
∑=

hn 2wn=
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5 We check that 

a The coordinate of  on φj,k is  and does not depend on j.

b The coordinate of  on φj,k is equal to .

6 These relations supply the ingredients for the algorithm. 

7 Up to now we used the filter h. The high-pass filter g is used in the twin 
scales relation linking the ψ and φ functions. Between two successive scales, 
we have the following twin-scale fundamental relation.

8 After the decomposition step, we justify now the reconstruction algorithm by 
building it. Let us simplify the notation. Starting from A1 and D1, let us 
study A0 = A1 + D1. The procedure is the same to calculate Aj = Aj+1 + Dj+1.

Let us define αn, δn,  by

Let us assess the  coordinates as 

We will focus our study on the first sum ; the second sum

Twin-Scale Relation Between ψ and φ

φj 1+ 0, hk

φj 1+ n, φj 1+ n, φj k,,〈 〉 hk 2n–=

ψ1 0, gkφ0 k,
k Z∈
∑= ψj 1+ 0, gkφj k,

k Z∈
∑=

αk
0

A1 αnφ1 n,
n
∑= D1 δnψ1 n,

n
∑= A0 αk

0φ0 k,
k
∑=

αk
0

αk
0 A0 φ0 k,,〈 〉 A1 D1+ φ0 k,,〈 〉 A1 φ0 k,,〈 〉 D1 φ0 k,,〈 〉+= = =

αn φ1 n, φ0 k,,〈 〉
n
∑ δn ψ1 n, φ0 k,,〈 〉

n
∑+=

αnhk 2n–

n
∑ δngk 2n–

n
∑+=

αnhk 2n–n∑
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 is handled in a similar manner. 

The calculations are easily organized if we note that (taking k = 0 in the 
previous formulas, makes things simpler) 

If we transform the (αn) sequence into a new sequence  defined by

..., α-1, 0, α0, 0, α1, 0, α2, 0, ... that is precisely

Then

and by extension

Since

the reconstruction steps are

1 Replace the α and δ sequences by upsampled versions  and  inserting 
zeros.

2 Filter by h and g respectively. 

3 Sum the obtained sequences.

δngk 2n–n∑

αnh 2n–

n
∑ … α 1– h2 α0h0 α1h 2– α2h 4– …+ + + + +=

… α 1– h2 0h1 α0h0 0h 1– α1h 2– 0h 3– α2h 4– …+ + + + + + + +=

α̃n( )

α̃2n αn α̃2n 1+, 0= =

αnh 2n–

n
∑ α̃nh n–

n
∑=

αnhk 2n–

n
∑ α̃nhk n–

n
∑=

αk
0 α̃nhk n–

n
∑ δ˜ ngk n–

n
∑+=

α̃ δ˜
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One-Dimensional Wavelet Capabilities

Basic one-dimensional objects.

Analysis-decomposition capabilities.

Synthesis-reconstruction capabilities.

Objects Description

Signal in original time s

Ak, 0 ≤ k ≤ j

Dk, 1 ≤ k ≤ j

Original signal

Approximation at level k

Detail at level k

Coefficients in scale-related time cAk, 1 ≤ k ≤ j

cDk, 1 ≤ k ≤ j

[cAj, cDj, ..., cD1]

Approximation coefficients at level k

Detail coefficients at level k

Wavelet decomposition at level j, j ≥ 1

Purpose Input Output M-File

Single-level decomposition s cA1, cD1 dwt

Single-level decomposition cAj cAj+1, cDj+1 dwt

Decomposition s [cAj, cDj, ..., cD1] wavedec

Purpose Input Output M-File

Single-level reconstruction cA1, cD1 s or A0 idwt

Single-level reconstruction cAj+1, cDj+1 cAj idwt

Full reconstruction [cAj, cDj, ..., cD1] s or A0 waverec

Selective reconstruction [cAj, cDj, ..., cD1] Al, Dm wrcoef 
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Decomposition structure utilities. .

To illustrate the command line mode for one-dimensional capabilities, see the 
section “One-Dimensional Analysis Using the Command Line” on page 2-31.

Two-Dimensional Wavelet Capabilities

Basic two-dimensional objects.

Dk stands for , the horizontal, vertical, and diagonal 
details at level k.

Purpose Input Output M-File

Extraction of detail 
coefficients

[cAj, cDj, ..., cD1] cDk, 

1 ≤ k ≤ j

detcoef

Extraction of 
approximation 
coefficients

[cAj, cDj, ..., cD1] cAk, 

0≤ k ≤ j

appcoef

Recomposition of 
the decomposition 
structure

[cAj, cDj, ..., cD1] [cAk, cDk, ..., 
cD1]

1 ≤ k ≤ j

upwlev

Objects Description

Image in 
original 
resolution

s Original image

A0 Approximation at level 0

Ak, 1 ≤ k ≤ j Approximation at level k

Dk, 1 ≤ k ≤ j Details at level k

Coefficients in 
scale-related 
resolution

cAk, 1 ≤ k ≤ j Approximation coefficients at level k

cDk, 1 ≤ k ≤ j Detail coefficients at level k

[cAj, cDj, ..., cD1] Wavelet decomposition at level j

Dk
h( )  Dk

v( )
,  Dk

d( )
,[ ]
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The same holds for cDk, which stands for .

The two-dimensional M-files are exactly the same as those for the 
one-dimensional case, but with a 2 appended on the end of the command.

For example, idwt becomes idwt2. For more information, see 
“One-Dimensional Wavelet Capabilities” on page 6-33.

To illustrate the command line mode for two-dimensional capabilities, see the 
section “Two-Dimensional Analysis Using the Command Line” on page 2-69.

cDk
h( )  cDk

v( )
,  cDk

d( )
,[ ]
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Dealing with Border Distortion
Classically, the DWT is defined for sequences with length of some power of 2, 
and different ways of extending samples of other sizes are needed. Methods for 
extending the signal include zero-padding, smooth padding, periodic extension, 
and boundary value replication (symmetrization).

The basic algorithm for the DWT is not limited to dyadic length and is based 
on a simple scheme: convolution and downsampling. As usual, when a 
convolution is performed on finite-length signals, border distortions arise.

Signal Extensions: Zero-Padding, Symmetrization, 
and Smooth Padding
To deal with border distortions, the border should be treated differently from 
the other parts of the signal. 

Various methods are available to deal with this problem, referred to as 
“wavelets on the interval” (see [CohDJV93] in “References” on page 6-152). 
These interesting constructions are effective in theory but are not entirely 
satisfactory from a practical viewpoint. 

Often it is preferable to use simple schemes based on signal extension on the 
boundaries. This involves the computation of a few extra coefficients at each 
stage of the decomposition process to get a perfect reconstruction. It should be 
noted that extension is needed at each stage of the decomposition process.

Details on the rationale of these schemes can be found in Chapter 8 of the book 
Wavelets and Filter Banks, by Strang and Nguyen (see [StrN96] in 
“References” on page 6-152). 

The available signal extension modes are as follows (see dwtmode):

• Zero-padding ('zpd'): This method is used in the version of the DWT given 
in the previous sections and assumes that the signal is zero outside the 
original support. 

The disadvantage of zero-padding is that discontinuities are artificially 
created at the border.
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• Symmetrization ('sym'): This method assumes that signals or images can 
be recovered outside their original support by symmetric boundary value 
replication. 

It is the default mode of the wavelet transform in the toolbox.

Symmetrization has the disadvantage of artificially creating discontinuities 
of the first derivative at the border, but this method works well in general for 
images. 

• Smooth padding of order 1 ('spd' or 'sp1'): This method assumes that 
signals or images can be recovered outside their original support by a simple 
first-order derivative extrapolation: padding using a linear extension fit to 
the first two and last two values.

Smooth padding works well in general for smooth signals. 

• Smooth padding of order 0 ('sp0'): This method assumes that signals or 
images can be recovered outside their original support by a simple constant 
extrapolation. For a signal extension this is the repetition of the first value 
on the left and last value on the right.

• Periodic-padding (1) ('ppd'): This method assumes that signals or images 
can be recovered outside their original support by periodic extension.

The disadvantage of periodic padding is that discontinuities are artificially 
created at the border. 

The DWT associated with these five modes is slightly redundant. But IDWT 
ensures a perfect reconstruction for any of the five previous modes whatever 
the extension mode used for DWT.

• Periodic-padding (2) ('per'): If the signal length is odd, the signal is first 
extended by adding an extra-sample equal to the last value on the right. 
Then a minimal periodic extension is performed on each side. The same kind 
of rule exists for images. This extension mode is used for SWT (1-D & 2-D). 

This last mode produces the smallest length wavelet decomposition. But the 
extension mode used for IDWT must be the same to ensure a perfect 
reconstruction.

Before looking at an illustrative example, let us compare some properties of the 
theoretical Discrete Wavelet Transform versus the actual DWT. 
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The theoretical DWT is applied to signals that are defined on an infinite length 
time interval (Z). For an orthogonal wavelet, this transform has the following 
desirable properties:

1 Norm preservation 

Let cA and cD be the approximation and detail of the DWT coefficients of an 
infinite length signal X. Then the l2-norm is preserved:

2 Orthogonality

Let A and D be the reconstructed approximation and detail. Then, A and D 
are orthogonal and

3 Perfect reconstruction

X = A + D 

Since the DWT is applied to signals that are defined on a finite-length time 
interval, extension is needed for the decomposition, and truncation is 
necessary for reconstruction. 

To ensure the crucial property 3 (perfect reconstruction) for arbitrary choices of

• The signal length

• The wavelet

• The extension mode

the properties 1 and 2 can be lost. These properties hold true for an extended 
signal of length usually larger than the length of the original signal. So only 
the perfect reconstruction property is always preserved. Nevertheless if the 
DWT is performed using the periodic extension mode ('per') and if the length 
of the signal is divisible by 2J, where J is the maximum level decomposition, 
the properties 1, 2, and 3 remain true.

It is interesting to notice that if arbitrary extension is used, and decomposition 
performed using the convolution-downsampling scheme, perfect reconstruction 

X 2 cA 2 cD 2
+=

X 2 A 2 D 2
+=
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is recovered using idwt or idwt2. This point is illustrated in the following 
example.

% Set initial signal and get filters.
x = sin(0.3*[1:451]); w = 'db9';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(w);
% In fact using a slightly redundant scheme, any signal
% extension strategy works well. 
% For example use random padding.

lx = length(x); lf = length(Lo_D);
randn('seed',654);
ex = [randn(1,lf) x randn(1,lf)];
axis([1 lx+2*lf -2 3])
subplot(211), plot(lf+1:lf+lx,x), title('Original signal')
axis([1 lx+2*lf -2 3])
subplot(212), plot(ex), title('Extended signal')
axis([1 lx+2*lf -2 3])

% Decomposition.
la = floor((lx+lf-1)/2);
ar = wkeep(dyaddown(conv(ex,Lo_D)),la);
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dr = wkeep(dyaddown(conv(ex,Hi_D)),la);
% Reconstruction.
xr = idwt(ar,dr,w,lx);

% Check perfect reconstruction.
err0 = max(abs(x-xr))

err0 = 
3.0464e-11

Now let us illustrate the differences between the first three methods both for 
1-D and 2-D signals.

Zero-Padding.

Using the GUI we will examine the effects of zero-padding.

1 From the MATLAB® prompt, type

dwtmode('zpd')

2 From the MATLAB prompt, type wavemenu.

The Wavelet Toolbox Main Menu appears.

3 Click the Wavelet 1-D menu item.The discrete wavelet analysis tool for 
one-dimensional signal data appears.

4 From the File menu, choose the Example Analysis option and select Basic 
Signals⇒ with db2 at level 5 --> Two nearby discontinuities.

5 Select Display Mode: Show and Scroll.

The detail coefficients clearly show the signal end effects.
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Symmetric Extension.

6 From the MATLAB prompt, type

dwtmode('sym')

7 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

8 From the File menu, choose the Example Analysis option and select Basic 
Signals⇒ with db2 at level 5 --> Two nearby discontinuities.

9 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are present, but the 
discontinuities are well detected.

Smooth Padding.

10 From the MATLAB prompt, type
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dwtmode('spd')

11 Click the Wavelet 1-D menu item.

The discrete wavelet analysis tool for one-dimensional signal data appears.

12 From the File menu, choose the Example Analysis option and select Basic 
Signals⇒ with db2 at level 5 --> Two nearby discontinuities.

13 Select Display Mode: Show and Scroll.

The detail coefficients show the signal end effects are not present, and the 
discontinuities are well detected.

Let us now consider an image example.

Original Image.

1 From the MATLAB prompt, type

load geometry;
% X contains the loaded image and 
% map contains the loaded colormap. 
nbcol = size(map,1);
colormap(pink(nbcol));
image(wcodemat(X,nbcol));
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Zero-Padding.

Now we set the extension mode to zero-padding and perform a decomposition 
of the image to level 3 using the sym4 wavelet. Then we reconstruct the 
approximation of level 3.

2 From the MATLAB prompt, type

lev = 3; wname = 'sym4';
dwtmode('zpd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));
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Symmetric Extension.

Now we set the extension mode to symmetric extension and perform a 
decomposition of the image again to level 3 using the sym4 wavelet. Then we 
reconstruct the approximation of level 3.

3 From the MATLAB prompt, type

dwtmode('sym')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
image(wcodemat(a,nbcol));

Smooth Padding.

Finally we set the extension mode to smooth padding and perform a 
decomposition of the image again to level 3 using the sym4 wavelet. Then we 
reconstruct the approximation of level 3.

4 From the MATLAB prompt, type

dwtmode('spd')
[c,s] = wavedec2(X,lev,wname);
a = wrcoef2('a',c,s,wname,lev);
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image(wcodemat(a,nbcol));
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Discrete Stationary Wavelet Transform (SWT)
We know that the classical DWT suffers a drawback: the DWT is not a time- 
invariant transform. This means that, even with periodic signal extension, the 
DWT of a translated version of a signal X is not, in general, the translated 
version of the DWT of X.

How to restore the translation invariance, which is a desirable property lost by 
the classical DWT? The idea is to average some slightly different DWT, called 
ε-decimated DWT, to define the stationary wavelet transform (SWT). This 
property is useful for several applications such as breakdown points detection. 

The main application of the SWT is de-noising. For more information on the 
rationale, see [CoiD95] in “References” on page 6-152. For examples, see 
“One-Dimensional Discrete Stationary Wavelet Analysis” on page 2-104 and 
“Two-Dimensional Discrete Stationary Wavelet Analysis” on page 2-122. 

The principle is to average several de-noised signals. Each of them is obtained 
using the usual de-noising scheme (see “De-Noising” on page 6-99), but applied 
to the coefficients of an e-decimated DWT. 

Note  We define the SWT only for signals of length divisible by 2J, where J is 
the maximum decomposition level, and we use the DWT with periodic (per) 
extension.

ε-Decimated DWT
What is an ε-decimated DWT?

There exist a lot of slightly different ways to handle the discrete wavelet 
transform. Let us recall that the DWT basic computational step is a 
convolution followed by a decimation. The decimation retains even indexed 
elements.

But the decimation could be carried out by choosing odd indexed elements 
instead of even indexed elements. This choice concerns every step of the 
decomposition process, so at every level we chose odd or even.

If we perform all the different possible decompositions of the original signal, we 
have 2J different decompositions, for a given maximum level J.
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Let us denote by εj = 1 or 0 the choice of odd or even indexed elements at step 
j. Every decomposition is labeled by a sequence of 0’s and 1’s: ε = ε1,…,εJ. This 
transform is called the ε-decimated DWT.

You can obtain the basis vectors of the ε-decimated DWT from those of the 
standard DWT by applying a shift and corresponds to a special choice of the 
origin of the basis functions.

How to Calculate the ε-Decimated DWT: SWT
It is possible to calculate all the ε-decimated DWT for a given signal of length 
N, by computing the approximation and detail coefficients for every possible 
sequence ε. Do this using iteratively, a slightly modified version of the basic 
step of the DWT of the form

[A,D] = dwt(X,wname,'mode','per','shift',e); 

The last two arguments specify the way to perform the decimation step. This is 
the classical one for e = 0, but for e = 1 the odd indexed elements are retained 
by the decimation.

Of course, this is not a good way to calculate all the ε-decimated DWT, because 
many computations are performed many times. We shall now describe another 
way, which is the stationary wavelet transform (SWT).

The SWT algorithm is very simple and is close to the DWT one. More precisely, 
for level 1, all the ε-decimated DWT (only two at this level) for a given signal 
can be obtained by convolving the signal with the appropriate filters as in the 
DWT case but without downsampling. Then the approximation and detail 
coefficients at level 1 are both of size N, which is the signal length. This can be 
visualized in the following figure. 

s

Lo_D

Hi_D

high-pass

approximation coefs

cA1

cD1

detail coefs

low-pass

where: X Convolve with filter X
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The general step j convolves the approximation coefficients at level j-1, with 
upsampled versions of the appropriate original filters, to produce the 
approximation and detail coefficients at level j. This can be visualized in the 
following figure.

Next, we illustrate how to extract a given ε-decimated DWT from the 
approximation and detail coefficients structure of the SWT.

We decompose a sequence of height numbers with the SWT, at level J = 3, using 
an orthogonal wavelet.

The function swt calculates successively the following arrays, where 
A(j,ε1,…,εj) or D(j,ε1,…,εj) denotes an approximation or a detail coefficient at 
level j obtained for the ε-decimated DWT characterized by ε = [ε1,…,εj].

One-Dimensional SWT

Decomposition step

Fj

Gj

cAj

Initialization

Convolve with filter X

cA0 = s

where X

cAj+1

cDj+1

level j+1level j

Upsample2

Fj

F0 = Lo_D

Fj+1

Gj

G0 = Hi_D

Gj+1

where

2

2

Filter computation
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Step 0 (Original Data).

Step 1.

Step 2.

Step 3.

Let j denote the current level, where j is also the current step of the algorithm. 
Then we have the following abstract relations with εi = 0 or 1:

[tmpAPP,tmpDET] = 
dwt(A(j,ε1, ,εj),wname,'mode','per','shift',εj+1); 
A(j+1,ε1, ,εj,εj+1) = wshift('1D',tmpAPP,εj+1);
D(j+1,ε1, ,εj,εj+1) = wshift('1D',tmpDET,εj+1);

where wshift performs a ε-circular shift of the input vector. Therefore, if 
εj+1 = 0, the wshift instruction is ineffective and can be suppressed. 

A(0) A(0) A(0) A(0) A(0) A(0) A(0) A(0)

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1) A(1,0) A(1,1)

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1) A(2,0,0) A(2,1,0) A(2,0,1) A(2,1,1)

D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1) D(1,0) D(1,1)

D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1) D(2,0,0) D(2,1,0) D(2,0,1) D(2,1,1)

D(3,0,0,0) D(3,1,0,0) D(3,0,1,0) D(3,1,1,0) D(3,0,0,1) D(3,1,0,1) D(3,0,1,1) D(3,1,1,1)

A(3,0,0,0) A(3,1,0,0) A(3,0,1,0) A(3,1,1,0) A(3,0,0,1) A(3,1,0,1) A(3,0,1,1) A(3,1,1,1)
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Let ε = [ε1,…,εJ] with εi = 0 or 1. We have 2J = 23 = eight different ε-decimated 
DWTs at level 3. Choosing ε, we can retrieve the corresponding ε-decimated 
DWT from the SWT array.

Now, consider the last step, J = 3, and let [Cε,Lε] denote the wavelet 
decomposition structure of an ε-decimated DWT for a given ε. Then, it can be 
retrieved from the SWT decomposition structure by selecting the appropriate 
coefficients as follows:

Cε =

Lε = [1,1,2,4,8] 

For example, the ε-decimated DWT corresponding to ε = [ε1, ε2, ε3] = [1,0,1] is 
shown in bold in the sequence of arrays of the previous example.

This can be extended to the 2-D case. The algorithm for the stationary wavelet 
transform for images is visualized in the following figure.

A(3, ε1, ε2, ε3) D(3, ε1, ε2, ε3) D(2, ε1, ε2) D(2, ε1, ε2) D(1, ε1) D(1, ε1) D(1, ε1) D(1, ε1)



Discrete Stationary Wavelet Transform (SWT)

6-51

Two-Dimensional SWT

Decomposition Step

rows

Fj

Gj

rows

cAj

columns

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

cA0 = s for the decomposition initialization

where

X

columns

Gj

Fj

X

columns

columns

Gj

Fj

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal
rows

columns

size(cAj) = size(cDj   )
(h)

= sNote = size(cDj   )
(v) = size(cDj   )

(d)

Where    s = size of the analyzed image

Initialization

Upsample2

Fj

F0 = Lo_D

Fj+1

Gj

G0 = Hi_D

Gj+1

where:

2

2

Filter Computation
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Inverse Discrete Stationary Wavelet Transform 
(ISWT)
Each ε-decimated DWT corresponding to a given ε can be inverted.

To reconstruct the original signal using a given ε-decimated DWT 
characterized by [ε1,…,εJ], we can use the abstract algorithm

FOR j = J:-1:1
A(j-1, ε1, ,εj-1) = ...
idwt(A(j,ε1, ,εj),D(S,ε1, ,εj)],wname,'mode','per','shift',εj);

END

For each choice of ε = (ε1,…,εJ), we obtain the original signal A(0), starting from 
slightly different decompositions, and capturing in different ways the main 
features of the analyzed signal.

The idea of the inverse discrete stationary wavelet transform is to average the 
inverses obtained for every ε-decimated DWT. This can be done recursively, 
starting from level J down to level 1.

The ISWT is obtained with the following abstract algorithm:

FOR j = J:-1:1
X0 = idwt(A(j,ε1, ,εj),D(j,ε1, ,εj)],wname, ...

'mode','per','shift',0);
X1 = idwt(A(j,ε1, ,εj),D(j,ε1, ,εj)],wname, ...

'mode','per','shift',1);
X1 = wshift('1D',X1,1);
A(j-1, ε1, ,εj-1) = (X0+X1)/2;

END

Along the same lines, this can be extended to the 2-D case.

More About SWT
Some useful references for the Stationary Wavelet Transform (SWT) are 
[CoiD95], [NasS95], and [PesKC96] (see “References” on page 6-152).
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Lifting Method for Constructing Wavelets
For some applications, you may not be able to find a suitable wavelet among 
the usual ones widely available. In this case, you can design a new wavelet 
adapted to the problem to be solved or the task to be processed.

For example, you can adapt a wavelet for the continuous wavelet transform 
(CWT) to a given pattern so that the resulting wavelet allows accurate pattern 
detection (see “New Wavelet for CWT” on page 2-216).

Designing new wavelets that are well suited for the discrete wavelet transform 
(DWT) is more delicate and, until recently, was exclusively a topic for wavelet 
specialists. The lifting method proposed by Sweldens (see [Swe98] in 
“References” on page 6-152) facilitates this kind of construction. It allows you 
to generate an infinite number of discrete biorthogonal wavelets starting from 
an initial one.

This section introduces the theory behind lifting methods, then presents the 
lifting functions of Wavelet Toolbox™ software and gives two short examples: 

• “Lifting Background” on page 6-53

• “Lifting Functions” on page 6-56

For more information on lifting, see [Swe98], [Mal98], [StrN96], and 
[MisMOP03] in “References” on page 6-152.

Lifting Background
The DWT is defined by four filters as described in “The Fast Wavelet 
Transform (FWT) Algorithm” on page 6-20. Two main properties of interest are

• The perfect reconstruction property

• The link with “true” wavelets (how to generate, starting from the filters, 
orthogonal or biorthogonal bases of the space of the functions of finite 
energy)

To illustrate the perfect reconstruction property, the following filter bank 
contains two decomposition filters, ha, ga and two reconstruction filters hs, gs.
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.

The perfect reconstruction property can be expressed by the equality s = e (up to 
an eventual shift or delay) where the two signals s and e are defined in the 
following figure:

This leads to the following two conditions referred to as perfect 
reconstruction(PR):

Hs(z) Ha(z-1) + Gs(z) Ga(z-1) = 2 z-d

Hs(z) Ha(-z-1) + Gs(z) Ga(-z-1) = 0

where Hs(z), Gs(z) are the z-transforms of the filters hs, gs respectively, and 
Ha(-z-1) and Ga(-z-1) are the z-transforms of ha, ga respectively.

The first condition is usually (incorrectly) called the perfect reconstruction 
condition and the second is the anti-aliasing condition.

Below we refer to the four filters (or equivalently four z-transforms) verifying 
the (PR) conditions as biorthogonal quadruplets.

The principle of lifting is to generate from a given biorthogonal quadruplet a 
new one by applying a finite sequence of primal or dual elementary lifting steps 
(ELS).
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A primal ELS generates from the biorthogonal quadruplet (Ha,Ga,Hs,Gs), a 
new one (Ha

N,Ga,Hs,Gs
N) by

Ha
N (z) = Ha(z) – Ga(z) S(z-2) 

Gs
N (z) = Gs(z) + Hs(z) S(z2) 

where S is any Laurent polynomial.

Let us recall that C is a Laurent polynomial if

C(z) = c1 z
pmax + c2 z

pmax-1 + … + cend z
pmin

involving positive and negative integer powers of z. The degree of C is defined 
as (pmax-pmin).

Similarly, a dual ELS generates from the same initial biorthogonal 
quadruplet, a new one (Ha,Ga

N,Hs
H,Gs) by

Hs
N (z) = Hs(z) + Gs(z) T(z2) 

Ga
N (z) = Ga(z) – Ha(z) T(z-2) 

where T is any Laurent polynomial.

These new quadruplets verify the perfect reconstruction conditions (PR). Note 
that even if the initial biorthogonal quadruplet is associated with “true” 
wavelets, the new ones are not automatically associated with “true” wavelets 
but remain useful for discrete wavelet transform of sequences instead of 
functions.

The previous results are sufficient to generate lifted quadruplets. 
Nevertheless, by introducing the polyphase matrix, interesting theoretical and 
algorithmic results can be derived. The synthesis polyphase matrix P 
associated with the biorthogonal quadruplet (Ha,Ga,Hs,Gs) is the 2-by-2 matrix 
defined (using the MATLAB® conventions) by

P(z) = [ even(Hs)(z)    even(Gs)(z)  ;  odd(Hs)(z)    odd(Gs)(z) ] 

where

even(C)(z2) = (C(z) + C(-z)) / 2

odd(C)(z2) = (C(z) - C(-z)) / 2z-1
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Then after a primal lifting the new polyphase matrix PN is obtained simply 
from P the initial one by

PN(z) = P(z) * [1 S(z) ; 0 1]

and after a dual lifting by

PN(z) = P(z) * [1 0 ; T(z) 1]

P itself can be decomposed, up to a normalization, as a product of matrices of 
the form [1 S(z) ; 0 1] or [1 0 ; T(z) 1] as soon as P is associated with a 
biorthogonal quadruplet. This form leads to the efficient polyphase algorithm 
(see [StrN96] in “References” on page 6-152) because the inverses of such 
elementary matrices are explicit.

Another useful consequence is that any biorthogonal quadruplet can be 
obtained by a sequence of ELS, up to a normalization, starting from a 
particular seed called the “lazy” wavelet (which is not a “true” wavelet and 
which simply separates odd and even samples of the filter bank input signal).

So, in the Wavelet Toolbox software, the key structure to perform what we 
commonly call the lifting wavelet transform (LWT) is a lifting scheme, which is 
simply a sequence of ELS and normalization steps.

Lifting Functions
The lifting functions of the toolbox are organized into five groups: 

• “Lifting Schemes” on page 6-57

• “Biorthogonal Quadruplets of Filters and Lifting schemes” on page 6-57

• “Usual Biorthogonal Quadruplets” on page 6-57

• “Lifting Wavelet Transform (LWT)” on page 6-58

• “Laurent Polynomials and Matrices” on page 6-58
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Lifting Schemes

Biorthogonal Quadruplets of Filters and Lifting schemes
These functions connect lifting schemes to biorthogonal quadruplets of filters 
and associated scaling and wavelet function pairs.

Usual Biorthogonal Quadruplets
These functions provide some basic lifting schemes associated with some usual 
orthogonal or biorthogonal (“true”) wavelets and the “lazy” one. These schemes 
can be used to initialize a lifting procedure.

Function Name Description

lsinfo Information about lifting schemes

displs Display a lifting scheme

addlift Add primal or dual elementary lifting steps to a lifting 
scheme

Function Name Description

liftfilt Apply elementary lifting steps on quadruplet of filters

filt2ls Transform a quadruplet of filters to a lifting scheme

ls2filt Transform a lifting scheme to a quadruplet of filters

bswfun Compute and plot biorthogonal “scaling and wavelet” 
functions

Function Name Description

wavenames Provides usual wavelet names available for LWT

liftwave Provides lifting scheme associated with a usual 
wavelet

wave2lp Provides Laurent polynomials associated with a usual 
wavelet
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Lifting Wavelet Transform (LWT)
These functions contain the direct and inverse lifting wavelet transform (LWT) 
M-files for both 1-D and 2-D signals. LWT reduces to the polyphase version of 
the DWT algorithm with zero-padding extension mode and without 
extra-coefficients.

Laurent Polynomials and Matrices
These functions permit an entry to representation and calculus of Laurent 
polynomials and matrices.

The lifting directory and the two object directories @laurpoly and @laurmat 
contain many other M-files.

Function Name Description

lwt 1-D lifting wavelet transform

ilwt Inverse 1-D lifting wavelet transform

lwtcoef Extract or reconstruct 1-D LWT wavelet coefficients

lwt2 2-D lifting wavelet transform

ilwt2 Inverse 2-D lifting wavelet transform

lwtcoef2 Extract or reconstruct 2-D LWT wavelet coefficients

Function Name Description

laurpoly Constructor for the class of Laurent polynomials

laurmat Constructor for the class of Laurent matrices
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Examples of Lifting Methods
These two simple examples illustrate the basic lifting capabilities of Wavelet 
Toolbox software. For more examples, see “Wavelets in Action: Examples and 
Case Studies” on page 4-1 and the demos provided with the toolbox.

Example 1: A primal lifting starting from Haar wavelet

% Start from the Haar wavelet and get the corresponding 
% lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...                        
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};                                   

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...                                     
'd'             [ -1.00000000]              [0]  
'p'             [  0.50000000]              [0]  
'p'             [ -0.12500000  0.12500000]  [0]  
[  1.41421356]  [  0.70710678]              []   
};                                               

% Transform the lifting scheme to biorthogonal
% filters quadruplet.
[LoD,HiD,LoR,HiR] = ls2filt(lsnew);

% Visualize the two pairs of scaling and wavelet
% functions.
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bswfun(LoD,HiD,LoR,HiR,'plot');

Illustrating LWT and integer LWT

% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew)

cA =

    1.9445    4.9497    7.7782   10.6066

cD =

    0.7071    0.7071    0.7071    0.7071

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Analysis scaling function (phiA)

0 1 2 3

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Analysis wavelet function (psiA)

0 1 2 3
−0.5

0

0.5

1

1.5
Synthesis scaling function (phiS)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2
Synthesis wavelet function (psiS)



Lifting Method for Constructing Wavelets

6-61

% Perform integer to integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)

cAint =

     1     3     5     7

cDint =

     1     1     1     1

% Invert the two transforms.
err = max(max(abs(x-ilwt(cA,cD,lsnew))))

err =

  4.4409e-016

errInt = max(max(abs(x-ilwt(cAint,cDint,lsnewInt))))

errInt =

     0

Example 2: Two primal liftings starting from the Haar wavelet

% Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');

% Lift the Haar filters.
twoels(1) = struct('type','p','value',...
laurpoly([0.125 -0.125],0));
twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);

% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
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[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = 
isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])

samewavelet =

     1

% Visualize the two times two pairs of scaling and wavelet
% functions.
bswfun(LoDN,HiDN,LoRN,HiRN,'plot');
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Frequently Asked Questions

Continuous or Discrete Analysis?
When is continuous analysis more appropriate than discrete analysis? To 
answer this, consider the related questions: Do you need to know all values of 
a continuous decomposition to reconstruct the signal s exactly? Can you 
perform nonredundant analysis?

When the energy of the signal is finite, not all values of a decomposition are 
needed to exactly reconstruct the original signal, provided that you are using a 
wavelet that satisfies some admissibility condition (see [Dau92] pages 7, 24, 
and 27). Usual wavelets satisfy this condition. In which case, a continuous-time 
signal s is characterized by the knowledge of the discrete transform 

.

In such cases, discrete analysis is sufficient and continuous analysis is 
redundant. When the signal is recorded in continuous time or on a very fine 
time grid, both analyses are possible. Which should be used? It depends; each 
one has its own advantages:

• Discrete analysis ensures space-saving coding and is sufficient for exact 
reconstruction.

• Continuous analysis is often easier to interpret, since its redundancy tends 
to reinforce the traits and makes all information more visible. This is 
especially true of very subtle information. Thus, the analysis gains in 
“readability” and in ease of interpretation what it loses in terms of saving 
space.

Why Are Wavelets Useful for Space-Saving Coding?

The family of functions (φ0,k;ψj,l) j ≤ 0,  used for the analysis is an 
orthogonal basis, therefore leading to nonredundancy. The orthogonality 
properties are  as soon as , and  as soon as 

.

Let us remember that for a one-dimensional signal,  stands for

For biorthogonal wavelets, the idea is similar.

C j k,( ) j k( , ), Z2∈

k l,( ) Z2∈

φ0 k, ψj ′ k ′,⊥ j ′ 0≤ ψj k, ψj ′ k ′,⊥

j k( , ) j ′ k′( , )≠

u v⊥

u x( )v x( ) xd
R∫ 0=
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What Is the Advantage Having Zero Average and Sometimes Several 
Vanishing Moments?

When the wavelet’s k + 1 moments are equal to zero (  for

) all the polynomial signals  have zero wavelet 
coefficients. 

As a consequence, the details are also zero. This property ensures the 
suppression of signals that are polynomials of a degree lower or equal to k.

What About the Regularity of a Wavelet ψ?
In theoretical and practical studies, the notion of regularity has been 
increasing in importance. Wavelets are tools used to study regularity and to 
conduct local studies. Deterministic fractal signals or Brownian motion 
trajectories are locally very irregular; for example, the latter are continuous 
signals, but their first derivative exists almost nowhere.

The definition of the concept of regularity is somewhat technical. To make 
things simple, we will define the regularity s of a signal f.

If the signal is s-time continuously differentiable at x0 and s is an integer ( ), 
then the regularity is s.

If the derivative of f of order m resembles locally around x0, then 
s = m + r with 0 < r < 1.

The regularity of f in a domain is that of its least regular point.

The greater s, the more regular the signal.

The regularity of certain wavelets is known. The following table gives some 
indications for Daubechies wavelets.

We have an asymptotic relation linking the size of the support of the 
Daubechies wavelets dbN and their regularity: when , 

length(support) = 2N, regularity .

ψ db1 = Haar db2 db3 db4 db5 db7 db10

Regularity Discontinuous 0.5 0.91 1.27 1.59 2.15 2.90

tjψ t( ) td
R∫ 0=

j 0= … k, , s t( ) ajt
j

0 j k≤ ≤
∑=

0≥

x x0–
r

N ∞→

s N
5
----≈
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The functions are more regular at certain points than at others (see Figure 6-9 
on page 6-65).

Figure 6-9:  Zooming in on db3 Wavelet

Selecting a regularity and a wavelet for the regularity is useful in estimations 
of the local properties of functions or signals. This can be used, for example, to 
make sure that a signal has a constant regularity at all points. Work by 
Donoho, Johnstone, Kerkyacharian, and Picard on function estimation and 
nonlinear regression is currently under way to adapt the statistical estimators 
to unknown regularity. See also the remarks by I. Daubechies (see [Dau92] 
page 301).

From a practical viewpoint, these questions arise in the world of finance in 
dealing with monetary and stock markets where detailed studies of very fast 
transactions are required.

Are Wavelets Useful in Fields Other Than Signal or Image Processing?

• From a theoretical viewpoint, wavelets are used to characterize large sets of 
mathematical functions and are used in the study of operators linked to 
partial differential equations.

• From a practical viewpoint, wavelets are used in several fields of numerical 
analysis, making certain complex calculations easier to handle or more 
precise.

What Functions Are Candidates to Be a Wavelet? 
If a function f is continuous, has null moments, decreases quickly towards 0 
when x tends towards infinity, or is null outside a segment of R, it is a likely 
candidate to become a wavelet.
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More precisely, the admissibility condition for  is

The family of shifts and dilations of  allows all finite energy signals to be 
reconstructed using the details in all scales. This allows only continuous 
analysis.

A wavelet satisfying only the admissibility condition is said to be crude.

In the toolbox, the ψ wavelet is usually associated with a scaling function φ. 
There are, however, some ψ wavelets for which we do not know how to associate 
a φ. In some cases we know how to prove that φ does not exist, for example, the 
Mexican hat wavelet.

Is It Easy to Build a New Wavelet?
For a minimal requirement on the wavelet properties, it is easy to build a new 
wavelet but not very interesting unless the new wavelet is adapted to a specific 
task. For example the paragraph “New Wavelet for CWT” on page 2-216 
explains how to obtain wavelets adapted to a given pattern, which can then be 
used for an accurate pattern detection. If more interesting properties (like the 
existence of φ for example) are needed, then building the wavelet is more 
difficult. Let us mention that an interesting approach is the lifting method (see 
“Lifting Method for Constructing Wavelets” on page 6-53).

Very few wavelets have an explicit analytical expression. Notable exceptions 
are wavelets that are piecewise polynomials (Haar, Battle-Lemarié; see 
[Dau92] in “References” on page 6-152), Morlet, or Mexican hat.

Wavelets, even db2, db3, ..., are defined by functional equations. The solution 
is numerical, and is accomplished using a fairly simple algorithm.

The basic property is the existence of a linear relation between the two 
functions φ(x/2) and φ(x). Another relation of the same type links ψ(x/2) to φ(x). 
These are the relations of the two scales, the twin-scale relations.

Indeed there are two sequences h and g of coefficients such that

and

ψ L1 R( ) L2 R( )∩∈

ψ̂ s( )
2

s
----------------- sd

R-∫
ψ̂ s( )

2

s
----------------- sd

R+∫ Kψ +∞<= =

ψ

h l2 Z( )∈ g l2 Z( )∈,
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By rewriting these formulas using Fourier transforms (expressed using a hat) 
we obtain

There are functions for which the h has a finite impulse response (FIR): 
there is only a finite number of nonzero hn coefficients. The associated wavelets 
were built by I. Daubechies (see [Dau92] in “References” on page 6-152) and are 
used extensively in the toolbox. The reader can refer to page 164 and 
Chapter 10 of the book Wavelets and Filter Banks, by Strang and Nguyen (see 
[StrN96] in “References” on page 6-152).

What Is the Link Between Wavelet and Fourier Analysis?
Wavelet analysis complements the Fourier analysis for which there are several 
functions: fft in MATLAB® software and spectrum and sptool in Signal 
Processing Toolbox™ software.

Fourier analysis uses the basic functions sin(ωt), cos(ωt), and exp(iωt).

• In the frequency domain, these functions are perfectly localized. The 
functions are suited to the analysis and synthesis of signals with a simple 
spectrum, which is very well localized in frequency; for example, 
sin(ω1 t) + 0.5 sin(ω2 t) - cos(ω3 t).

• In the time domain, these functions are not localized. It is difficult for them 
to analyze or synthesize complex signals presenting fast local variations such 
as transients or abrupt changes: the Fourier coefficients for a frequency ω 
will depend on all values in the signal. To limit the difficulties involved, it is 
possible to “window” the signal using a regular function, which is zero or 
nearly zero outside a time segment [-m, m]. 

We then build “a well localized slice” as I. Daubechies calls it (see page 2 of 
[Dau92] listed in “References” on page 6-152). The windowed-Fourier analysis 
coefficients are the doubly indexed coefficients:

1
2
---φ x

2
---⎝ ⎠
⎛ ⎞ 1

2
------- hnφ x n–( )

n Z∈
∑=

1
2
---ψ x

2
---⎝ ⎠
⎛ ⎞ 1

2
------- gnφ x n–( )

n Z∈
∑=

φˆ 2ω( ) 1

2
-------h

ˆ
ω( )φ̂ ω( )= ψ̂ 2ω( ) 1

2
-------ĝ ω( ) φ̂ ω( )=

φ
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The analogy of this formula with that of the wavelet coefficients is obvious:

The large values of a correspond to small values of ω.

The Fourier coefficient  depends on the values of the signal s on the 
segment [t - m, t + m] with a constant width. If ψ, like g, is zero outside of 
[-m, m], the C(a,t) coefficients will depend on the values of the signal s on the 
segment [t - am, t + am] of width 2am, which varies as a function of a. This 
slight difference solves several difficulties, allowing a kind of time-windowed 
analysis, different at the various scales a.

The wavelets stay competitive, however, even in contexts considered favorable 
for the Fourier technique. I. Daubechies (see [Dau92] pages 3 to 6) gives an 
example of windowed-Fourier processing and complex Morlet wavelet 

processing, with , of a signal composed 

mainly of the sum of two sines. This wavelet analysis gives good results.

How to Connect Scale to Frequency? 
A common question is, what is the relationship between scale and frequency?

The answer can only be given in a broad sense, and it’s better to speak about 
the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency Fc of the wavelet and to use 
the following relationship (see [Abr97] in “References” on page 6-152).

Gs ω t( , ) s u( )g t u–( )e iωu– ud
R
∫=

C a t( , ) s u( ) 1
a

-------⎝ ⎠
⎛ ⎞ψ t u–

a
-----------⎝ ⎠
⎛ ⎞  ud

R
∫=

Gs ω t( , )

ψ t( ) Ce t– 2 α2⁄ eiπt e π2– α2 4⁄
–( )= α 4=

Fa

Fc
a Δ⋅
-----------=
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where

• a is a scale.

•  is the sampling period.

• Fc is the center frequency of a wavelet in Hz.

• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of 
frequency Fc. The frequency maximizing the fft of the wavelet modulus is Fc. 
The function centfrq can be used to compute the center frequency and it allows 
the plotting of the wavelet with the associated approximation based on the 
center frequency. Figure 6-10 on page 6-70 shows some examples generated 
using the centfrq function.

• Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of order 1, 
and the Gaussian derivative of order 4.

• Two complex wavelets: the complex Gaussian derivative of order 6 and a 
Shannon complex wavelet. 

As you can see, the center frequency-based approximation captures the main 
wavelet oscillations. So the center frequency is a convenient and simple 
characterization of the leading dominant frequency of the wavelet.

If we accept to associate the frequency Fc to the wavelet function, then when 
the wavelet is dilated by a factor a, this center frequency becomes Fc / a. Lastly, 
if the underlying sampling period is , it is natural to associate to the scale a 
the frequency

The function scal2frq computes this correspondence.

Δ

Δ

Fa

Fc
a Δ⋅
-----------=
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Figure 6-10:  Center Frequencies for Real and Complex Wavelets
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To illustrate the behavior of this procedure, consider the following simple test. 
We generate sine functions of sensible frequencies F0. For each function, we 
shall try to detect this frequency by a wavelet decomposition followed by a 
translation of scale to frequency. More precisely, after a discrete wavelet 
decomposition, we identify the scale a* corresponding to the maximum value of 
the energy of the coefficients. The translated frequency F* is then given by

scal2frq(a_star,'wname',sampling_period)

The F* values are close to the chosen F0. The plots at the end of the example 
present the periods instead of the frequencies. If we change the F0 values 
slightly, the results remain satisfactory.

For example:

% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Set scales. 
amax = 7;
a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta); 

% Compute associated pseudo-periods.
per = 1./f; 

% Plot pseudo-periods versus scales.
subplot(211), plot(a,per)
title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')

% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.
for i = 1:amax

% Generate sine function of period
% per(i) at sampling period delta.
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t = 0:delta:100;
x = sin((t.*2*pi)/per(i));

% Decompose x at level 9.
[c,l] = wavedec(x,9,wname);

% Estimate standard deviation of detail coefficients.
stdc = wnoisest(c,l,[1:amax]);
% Compute identified period.
[y,jmax] = max(stdc);
idper(i) = per(jmax);

end

% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period') 

Figure 6-11:  Detected Versus Computed Pseudo-Periods
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Wavelet Families: Additional Discussion
There are different types of wavelet families whose qualities vary according to 
several criteria. The main criteria are

• The support of ψ,  (and φ, ): the speed of convergence to 0 of these 
functions (  or ) when the time t or the frequency  goes to infinity, 
which quantifies both time and frequency localizations

• The symmetry, which is useful in avoiding dephasing in image processing

• The number of vanishing moments for ψ or for φ (if it exists), which is useful 
for compression purposes

• The regularity, which is useful for getting nice features, like smoothness of 
the reconstructed signal or image, and for the estimated function in 
nonlinear regression analysis

These are associated with two properties that allow fast algorithm and 
space-saving coding:

• The existence of a scaling function φ
• The orthogonality or the biorthogonality of the resulting analysis

They may also be associated with these less important properties:

• The existence of an explicit expression

• The ease of tabulating

• The familiarity with use

Typing waveinfo in command-line mode displays a survey of the main 
properties of all wavelet families available in the toolbox.

Note that the φ and ψ functions can be computed using wavefun; the filters are 
generated using wfilters. We provide definition equations for several 
wavelets. Some are given explicitly by their time definitions, others by their 
frequency definitions, and still others by their filters.

ψ̂ φ̂
ψ t( ) ψ̂ ω( ) ω
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The table below outlines the wavelet families included in the toolbox.

Daubechies Wavelets: dbN
In dbN, N is the order. Some authors use 2N instead of N. More about this 
family can be found in [Dau92] pages 115, 132, 194, 242. By typing 
waveinfo('db'), at the MATLAB® command prompt, you can obtain a survey 
of the main properties of this family.

Wavelet Family 
Short Name

Wavelet Family Name

'haar' Haar wavelet

'db' Daubechies wavelets

'sym' Symlets

'coif' Coiflets

'bior' Biorthogonal wavelets

'rbio' Reverse biorthogonal wavelets

'meyr' Meyer wavelet

'dmey' Discrete approximation of Meyer wavelet

'gaus' Gaussian wavelets

'mexh' Mexican hat wavelet

'morl' Morlet wavelet

'cgau' Complex Gaussian wavelets

'shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets

'cmor' Complex Morlet wavelets
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Figure 6-12:  Daubechies Wavelets db4 on the Left and db8 on the Right

This family includes the Haar wavelet, written db1, the simplest wavelet 
imaginable and certainly the earliest. Using waveinfo('haar'), you can obtain 
a survey of the main properties of this wavelet.

Haar 

dbN
These wavelets have no explicit expression except for db1, which is the Haar 
wavelet. However, the square modulus of the transfer function of h is explicit 
and fairly simple.

• Let , where denotes the binomial 
coefficients.
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• The support length of  and  is 2N - 1. The number of vanishing moments 
of  is N.

• Most dbN are not symmetrical. For some, the asymmetry is very pronounced.

• The regularity increases with the order. When N becomes very large,  and 
 belong to  where μ is approximately equal to 0.2. Certainly, this 

asymptotic value is too pessimistic for small-order N. Note that the functions 
are more regular at certain points than at others.

• The analysis is orthogonal.

Symlet Wavelets: symN
In symN, N is the order. Some authors use 2N instead of N. Symlets are only 
near symmetric; consequently some authors do not call them symlets. More 
about symlets can be found in [Dau92], pages 194, 254-257. By typing 
waveinfo('sym') at the MATLAB command prompt, you can obtain a survey 
of the main properties of this family.

Figure 6-13:  Symlets sym4 on the Left and sym8 on the Right
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Daubechies proposes modifications of her wavelets that increase their 
symmetry can be increased while retaining great simplicity.

The idea consists of reusing the function m0 introduced in the dbN, considering 
the  as a function W of . 

Then we can factor W in several different ways in the form of  
because the roots of W with modulus not equal to 1 go in pairs. If one of the 
roots is z1, then  is also a root.

• By selecting U such that the modulus of all its roots is strictly less than 1, we 
build Daubechies wavelets dbN. The U filter is a “minimum phase filter.”

• By making another choice, we obtain more symmetrical filters; these are 
symlets.

The symlets have other properties similar to those of the dbNs.

Coiflet Wavelets: coifN
In coifN, N is the order. Some authors use 2N instead of N. For the coiflet 
construction, see [Dau92] pages 258-259. By typing waveinfo('coif') at the 
MATLAB command prompt, you can obtain a survey of the main properties of 
this family.

Figure 6-14:  Coiflets coif3 on the Left and coif5 on the Right
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Built by Daubechies at the request of Coifman, the function  has 2N moments 
equal to 0 and, what is more unusual, the function  has 2N-1 moments equal 
to 0. The two functions have a support of length 6N-1.

The coifN  and  are much more symmetrical than the dbNs. With respect 
to the support length, coifN has to be compared to db3N or sym3N. With 
respect to the number of vanishing moments of , coifN has to be compared to 
db2N or sym2N.

If s is a sufficiently regular continuous time signal, for large j the coefficient 
 is approximated by .

If s is a polynomial of degree d, d ≤ N - 1, then the approximation becomes an 
equality. This property is used, connected with sampling problems, when 
calculating the difference between an expansion over the  of a given signal 
and its sampled version.

Biorthogonal Wavelet Pairs: biorNr.Nd
More about biorthogonal wavelets can be found in [Dau92] pages 259, 262-285 
and in [Coh92]. By typing waveinfo('bior') at the MATLAB command 
prompt, you can obtain a survey of the main properties of this family, as well 
as information about Nr and Nd orders and associated filter lengths.

Figure 6-15:  Biorthogonal Wavelets bior2.4 on the Left and bior4.4 on the 
Right
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The new family extends the wavelet family. It is well known in the subband 
filtering community that symmetry and exact reconstruction are incompatible 
(except for the Haar wavelet) if the same FIR filters are used for reconstruction 
and decomposition. Two wavelets, instead of just one, are introduced:

• One, , is used in the analysis, and the coefficients of a signal s are

• The other, , is used in the synthesis

In addition, the wavelets  are related by duality in the following sense:

 as soon as  or and even

 as soon as 

It becomes apparent, as Cohen pointed out in his thesis, that “the useful 
properties for analysis (e.g., oscillations, zero moments) can be concentrated on 
the  function whereas the interesting properties for synthesis (regularity) are 
assigned to the  function. The separation of these two tasks proves very 
useful” (see [Coh92] page 110).

,  can have very different regularity properties (see [Dau92] page 269).

The , , , and  functions are zero outside of a segment.

The calculation algorithms are maintained, and thus very simple.

The filters associated with m0 and  can be symmetrical. The functions used 
in the calculations are easier to build numerically than those used in the usual 
wavelets.

ψ̃
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Meyer Wavelet: meyr
Both ψ and φ are defined in the frequency domain, starting with an auxiliary 
function ν (see [Dau92] pages 117, 119, 137, 152). By typing waveinfo('meyr') 
at the MATLAB command prompt, you can obtain a survey of the main 
properties of this wavelet.

Figure 6-16:  The Meyer Wavelet
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By changing the auxiliary function, you get a family of different wavelets. For 
the required properties of the auxiliary function ν (see “References” on 
page 6-152 for more information). This wavelet ensures orthogonal analysis.

The function ψ does not have finite support, but ψ decreases to 0 when , 
faster than any inverse polynomial

 such that 

This property holds also for the derivatives

The wavelet is infinitely differentiable.

Note  Although the Meyer wavelet is not compactly supported, there exists a 
good approximation leading to FIR filters, and then allowing DWT. By typing 
waveinfo('dmey') at the MATLAB command prompt, you can obtain a survey 
of the main properties of this pseudo-wavelet.

Battle-Lemarie Wavelets
See [Dau92] pages 146-148, 151.

These wavelets are not included in the toolbox, but we use the spline functions 
in the biorthogonal family.

There are two forms of the wavelet: one does not ensure the analysis to be 
orthogonal, while the other does. For N=1, the scaling functions are linear 
splines. For N=2, the scaling functions are quadratic B-spline with finite 
support. More generally, for an N-degree B-spline,

with  if N is odd,  if N is even. 
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This formula can be used to build the filters. The twin scale relation is

• For an even N, φ is symmetrical around, x = 1/2; ψ is antisymmetrical around 
x = 1/2. For an odd N, φ is symmetrical around x = 0; ψ is symmetrical around 
x = 1/2.

• The analysis becomes orthogonal if we transform the functions ψ and φ 
somewhat. For N=1, for instance, let

• The supports of ψ and  are not finite, but the decrease of the functions ψ 
and  to 0 is exponential. The support of φ is compact. See [Dau92] p. 151.

• The ψ functions have derivatives up to order N-1.

Mexican Hat Wavelet: mexh
See [Dau92] page 75.

By typing waveinfo('mexh') at the MATLAB command prompt, you can 
obtain a survey of the main properties of this wavelet.
.

Figure 6-17:  The Mexican Hat
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This function is proportional to the second derivative function of the Gaussian 
probability density function.

As the φ function does not exist, the analysis is not orthogonal.

Morlet Wavelet: morl
See [Dau92] page 76. 

By typing waveinfo('morl') at the MATLAB command prompt you can obtain 
a survey of the main properties of this wavelet.

Figure 6-18:  The Morlet Wavelet

The constant C is used for normalization in view of reconstruction.

The Morlet wavelet does not satisfy exactly the admissibility condition 
discussed earlier in “What Functions Are Candidates to Be a Wavelet?” on 
page 6-65.
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Additional Real Wavelets
Some other real wavelets are available in the toolbox.

Reverse Biorthogonal Wavelet Pairs: rbioNr.Nd
This family is obtained from the biorthogonal wavelet pairs previously 
described.

You can obtain a survey of the main properties of this family by typing 
waveinfo('rbio') from the MATLAB command line.

Figure 6-19:  Reverse Biorthogonal Wavelet rbio1.5

Gaussian Derivatives Family: gaus
This family is built starting from the Gaussian function  by 
taking the  derivative of  f. 

The integer  is the parameter of this family and in the previous formula,  
is such that

 where is the derivative of  f.

You can obtain a survey of the main properties of this family by typing 
waveinfo('gaus') from the MATLAB command line.
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Figure 6-20:  Gaussian Derivative Wavelet gaus8

FIR Based Approximation of the Meyer Wavelet: dmey
See [Abr97] page 268. 

This wavelet is a FIR based approximation of the Meyer wavelet, allowing fast 
wavelet coefficients calculation using DWT.

You can obtain a survey of the main properties of this wavelet by typing 
waveinfo('dmey') from the MATLAB command line.

Figure 6-21:  The FIR Based Approximation of the Meyer Wavelet
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Complex Wavelets
Some complex wavelet families are available in the toolbox.

Complex Gaussian Wavelets: cgau
This family is built starting from the complex Gaussian function

 by taking the  derivative of . The integer  is the 
parameter of this family and in the previous formula,  is such that

 where is the derivative of f.

You can obtain a survey of the main properties of this family by typing 
waveinfo('cgau') from the MATLAB command line.

Figure 6-22:  Complex Gaussian Wavelet cgau8

Complex Morlet Wavelets: cmor
See [Teo98] pages 62-65.
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depending on two parameters:

•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('cmor') from the MATLAB command line.

Figure 6-23:  Complex Morlet Wavelet morl 1.5-1
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•  is an integer order parameter ( ).

•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('fbsp') from the MATLAB command line.

Figure 6-24:  Complex Frequency B-Spline Wavelet fbsp 2-0.5-1
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See [Teo98] pages 62-65.
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•  is a bandwidth parameter.

•  is a wavelet center frequency.

You can obtain a survey of the main properties of this family by typing 
waveinfo('shan') from the MATLAB command line.

Figure 6-25:  Complex Shannon Wavelet shan 0.5-1
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Summary of Wavelet Families and Associated 
Properties (Part 1)

Property morl mexh meyr haar dbN symN coifN biorNr.Nd

Crude • •

Infinitely regular • • •

Arbitrary regularity • • • •

Compactly supported 
orthogonal

• • • •

Compactly supported 
biothogonal

•

Symmetry • • • • •

Asymmetry •

Near symmetry • •

Arbitrary number of 
vanishing moments

• • • •

Vanishing moments for 
φ

•

Existence of φ • • • • • •

Orthogonal analysis • • • • •

Biorthogonal analysis • • • • • •

Exact reconstruction • • • • • • •

FIR filters • • • • •

Continuous transform • • • • • • • •

Discrete transform • • • • • •

≈
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Crude wavelet — A wavelet is said to be crude when satisfying only the 
admissibility condition. See “What Functions Are Candidates to Be a Wavelet?” 
on page 6-65.

Regularity — See “What About the Regularity of a Wavelet y?” on page 6-64.

Orthogonal — See “Details and Approximations” on page 6-16.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-78.

Vanishing moments — See “Suppressing Signals” on page 6-94".

Exact reconstruction — See “Reconstruction Filters” on page 1-30.

Continuous — See “The Continuous Wavelet Transform” on page 1-15.

Discrete — See “The Discrete Wavelet Transform” on page 1-24.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on 
page 6-20.

Fast algorithm • • • • •

Explicit expression • • • For 
splines

Property morl mexh meyr haar dbN symN coifN biorNr.Nd
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Summary of Wavelet Families and Associated 
Properties (Part 2)

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan

Crude • • • • •

Infinitely regular • • • • •

Arbitrary regularity •

Compactly supported 
orthogonal

Compactly supported 
biothogonal

•

Symmetry • • • • • • •

Asymmetry

Near symmetry

Arbitrary number of vanishing 
moments

•

Vanishing moments for φ

Existence of φ •

Orthogonal analysis

Biorthogonal analysis •

Exact reconstruction • • • • • •

FIR filters • •

Continuous transform • •

Discrete transform • •

Fast algorithm • •

Explicit expression For splines • • • • •

≈
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Crude wavelet — A wavelet is said to be crude when satisfying only the 
admissibility condition. See “What Functions Are Candidates to Be a Wavelet?” 
on page 6-65.

Regularity — See “What About the Regularity of a Wavelet y?” on page 6-64.

Orthogonal — See “Details and Approximations” on page 6-16.

Biorthogonal — See “Biorthogonal Wavelet Pairs: biorNr.Nd” on page 6-78.

Vanishing moments — See “Suppressing Signals” on page 6-94".

Exact reconstruction — See “Reconstruction Filters” on page 1-30.

Continuous — See “The Continuous Wavelet Transform” on page 1-15.

Discrete — See “The Discrete Wavelet Transform” on page 1-24.

FIR filters — See “Filters Used to Calculate the DWT and IDWT” on 
page 6-20.

Complex valued • • • •

Complex continuous transform • • • •

FIR-based approximation •

Property rbioNr.Nd gaus dmey cgau cmor fbsp shan
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Wavelet Applications: More Detail
Chapter 3, “Wavelet Applications,” and Chapter 4, “Wavelets in Action: 
Examples and Case Studies,” illustrate wavelet applications with examples 
and case studies. This section re-examines some of the applications with 
additional theory and more detail.

Suppressing Signals
As shown in the section “Suppressing Signals” on page 3-15, by suppressing a 
part of a signal the remainder may be highlighted.

Let  be a wavelet with at least k+1 vanishing moments:

for j = 0, ..., k,

If the signal s is a polynomial of degree k, then the coefficients C(a,b) = 0 for all 
a and all b. Such wavelets automatically suppress the polynomials. The degree 
of s can vary with time x, provided that it remains less than k.

If s is now a polynomial of degree k on segment , then C(a,b) = 0 as long 

as the support of the function  is included in . The suppression is 

local. Effects will appear on the edges of the segment.

Likewise, let us suppose that, on  to which 0 belongs, we have the 

expansion . The s and 
g signals then have the same wavelet coefficients. This is the technical 
meaning of the phrase “The wavelet suppresses a polynomial part of signal s.” 
The signal g is the “irregular” part of the signal s. The  wavelet 
systematically suppresses the regular part and analyzes the irregular part. 
This effect is easily seen in details D1 through D4 in “Example 2: A Frequency 
Breakdown” in Chapter 4 (see the curves d1, d2, d3, and d4). The wavelet 
suppresses the slow sine wave, which is locally assimilated to a polynomial.

Another way of suppressing a component of the signal is to modify and force 
certain coefficients C(a,b) to be equal to 0. Having selected a set E of indices, 
we stipulate that , C(a,b) = 0. We then synthesize the signal using 
the modified coefficients.
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Let us illustrate, with the following M-file, some features of wavelet processing 
using coefficients (resulting plots can be found in Figure 6-26 on page 6-96).

% Load original 1-D signal. 
load sumsin; s = sumsin;

% Set the wavelet name and perform the decomposition 
% of s at level 4, using coif3. 
w = 'coif3'; maxlev = 4; 
[c,l] = wavedec(s,maxlev,w); 
newc = c;

% Force to zero the detail coefficients at levels 3 and 4. 
newc = wthcoef('d',c,l,[3,4]);

% Force the detail coefficients at level 1 to zero on 
% original time interval [400:600] and shrink otherwise. 
% determine first and last index of 
% level 1 coefficients. 
k = maxlev+1; 
first = sum(l(1:k-1))+1; last = first+l(k)-1; 
indd1 = first:last;

% shrink by dividing by 3.
newc(indd1) = c(indd1)/3;

% find at level 1 indices of coefficients 
% in the interval [400:600], 
% note that time t in original grid corresponds to time 
% t/2^k on the grid at level k. Here k=1. 
indd1 = first+400/2:first+600/2; 

% force it to zero. 
newc(indd1) = zeros(size(indd1));

% Set to 4 a coefficient at level 2 corresponding roughly 
% to original time t = 500. 
k = maxlev; first = sum(l(1:k-1))+1; 
newc(first+500/2^2) = 4;
% Synthesize modified decomposition structure. 
synth = waverec(newc,l,w);
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Figure 6-26:  Suppress or Modify Signal Components, Acting on Coefficients

Simple procedures to select the set of indices E are used for de-noising and 
compression purposes (see the sections “De-Noising” on page 6-99 and “Data 
Compression” on page 6-112).
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Splitting Signal Components
Wavelet analysis is a linear technique: the wavelet coefficients of the linear 

combination of two signals  are equal to the linear combination of 

their wavelet coefficients . The same holds true for the 

corresponding approximations and details, for example  and 

.

Noise Processing
Let us first analyze noise as an ordinary signal. Then the probability 
characteristics correlation function, spectrum, and distribution need to be 
studied.

In general, for a one-dimensional discrete-time signal, the high frequencies 
influence the details of the first levels (the small values of j), while the low 
frequencies influence the deepest levels (the large values of j) and the 
associated approximations.

If a signal comprising only white noise is analyzed, (see for example “Example 
3: Uniform White Noise” in Chapter 4), the details at the various levels 
decrease in amplitude as the level increases. The variance of the details also 
decreases as the level increases. The details and approximations are not white 
noise anymore, as color is introduced by the filters.

On the coefficients C(j,k), where j stands for the scale and k for the time, we can 
add often-satisfied properties for discrete time signals:

• If the analyzed signal s is stationary, zero mean, and a white noise, the 
coefficients are uncorrelated.

• If furthermore s is Gaussian, the coefficients are independent and Gaussian.

• If s is a colored, stationary, zero mean Gaussian sequence, then the 
coefficients remain Gaussian. For each scale level j, the sequence of 
coefficients is a colored stationary sequence. It could be interesting to know 
how to choose the wavelet that would de-correlate the coefficients. This 
problem has not yet been resolved. Furthermore, the wavelet (if indeed it 
exists) most probably depends on the color of the signal. For the wavelet to 
be calculated, the color must be known. In most instances, this is beyond our 
reach.
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• If s is a zero mean ARMA model stationary for each scale j, then  
is also a stationary, zero mean ARMA process whose characteristics depend 
on j.

• If s is a noise whose

- Correlation function  is known, we know how to calculate the 
correlations of C(j,k) and C(j,k′).

- Spectrum  is known, we know how to calculate the spectrum of C(j,k), 
 and the cross spectrum of two different levels j and j′.

These results are easily established, since they can be deduced from the fact 
that the C(a,b) coefficients are calculated primarily by convolving  and s, and 
using conventional formulas. The quantity that comes into play is the 
self-reproduction function U(a,b), which is obtained by analyzing the  
wavelet as if it was a signal:

From the results for coefficients we deduce the properties of the details (and of 
the approximations), by using the formula

where the C(j,k) coefficients are random variables and the functions  are 
not. If the support of  is finite, only a finite number of terms will be summed.
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De-Noising
This section discusses the problem of signal recovery from noisy data. This 
problem is easy to understand looking at the following simple example, where 
a slow sine is corrupted by a white noise.

Figure 6-27:  A Simple De-Noising Example

The Basic One-Dimensional Model
The underlying model for the noisy signal is basically of the following form:

where time n is equally spaced.
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In the simplest model we suppose that e(n) is a Gaussian white noise N(0,1) 
and the noise level  is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to 
recover f. 

The method is efficient for families of functions f that have only a few nonzero 
wavelet coefficients. These functions have a sparse wavelet representation. For 
example, a smooth function almost everywhere, with only a few abrupt 
changes, has such a property.

From a statistical viewpoint, the model is a regression model over time and the 
method can be viewed as a nonparametric estimation of the function f using 
orthogonal basis.

De-Noising Procedure Principles
The general de-noising procedure involves three steps. The basic version of the 
procedure follows the steps described below.

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of 
the signal s at level N.

2 Threshold detail coefficients 

For each level from 1 to N, select a threshold and apply soft thresholding to 
the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation 
coefficients of level N and the modified detail coefficients of levels from 
1 to N.

Two points must be addressed: how to choose the threshold, and how to 
perform the thresholding.

σ
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Soft or Hard Thresholding?
Thresholding can be done using the function

yt = wthresh(y,sorh,thr)

which returns soft or hard thresholding of input y, depending on the sorh 
option. Hard thresholding is the simplest method. Soft thresholding has nice 
mathematical properties and the corresponding theoretical results are 
available (For instance, see [Don95] in “References” on page 6-152).

Let us give a simple example.

y = linspace(-1,1,100); 
thr = 0.4; 
ythard = wthresh(y,'h',thr); 
ytsoft = wthresh(y,'s',thr);

Figure 6-28:  Hard and Soft Thresholding of the Signal s = x

Comment: Let t denote the threshold. The hard threshold signal is x if |x| > t, 
and is 0 if |x| ≤ t. The soft threshold signal is sign(x)(|x| - t) if |x| > t and is 
0 if |x| ≤ t.

Hard thresholding can be described as the usual process of setting to zero the 
elements whose absolute values are lower than the threshold. Soft 
thresholding is an extension of hard thresholding, first setting to zero the 
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elements whose absolute values are lower than the threshold, and then 
shrinking the nonzero coefficients towards 0 (see Figure 6-28 above).

As can be seen in the comment of Figure 6-28 on page 6-101, the hard 
procedure creates discontinuities at x = ±t, while the soft procedure does not.

Threshold Selection Rules
According to the basic noise model, four threshold selection rules are 
implemented in the M-file thselect. Each rule corresponds to a tptr option in 
the command

thr = thselect(y,tptr)

which returns the threshold value.

• Option tptr = 'rigrsure' uses for the soft threshold estimator a threshold 
selection rule based on Stein’s Unbiased Estimate of Risk (quadratic loss 
function). You get an estimate of the risk for a particular threshold value t. 
Minimizing the risks in t gives a selection of the threshold value.

• Option tptr = 'sqtwolog' uses a fixed form threshold yielding minimax 
performance multiplied by a small factor proportional to log(length(s)).

• Option tptr = 'heursure' is a mixture of the two previous options. As a 
result, if the signal-to-noise ratio is very small, the SURE estimate is very 
noisy. So if such a situation is detected, the fixed form threshold is used.

• Option tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax 
performance for mean square error against an ideal procedure. The minimax 
principle is used in statistics to design estimators. Since the de-noised signal 
can be assimilated to the estimator of the unknown regression function, the 

Option Threshold Selection Rule

'rigrsure' Selection using principle of Stein’s Unbiased Risk 
Estimate (SURE)

'sqtwolog' Fixed form threshold equal to sqrt(2∗log(length(s)))

'heursure' Selection using a mixture of the first two options

'minimaxi' Selection using minimax principle
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minimax estimator is the option that realizes the minimum, over a given set 
of functions, of the maximum mean square error.

Typically it is interesting to show how thselect works if y is a Gaussian white 
noise N(0,1) signal.

y = randn(1,1000);

thr = thselect(y,'rigrsure')
thr = 

2.0735

thr = thselect(y,'sqtwolog')
thr = 

3.7169

thr = thselect(y,'heursure')
thr = 

3.7169

thr = thselect(y,'minimaxi')
thr = 

2.2163

Because y is a standard Gaussian white noise, we expect that each method kills 
roughly all the coefficients and returns the result f(x) = 0. For Stein’s Unbiased 
Risk Estimate and minimax thresholds, roughly 3% of coefficients are saved. 
For other selection rules, all the coefficients are set to 0.

We know that the detail coefficients vector is the superposition of the 
coefficients of f and the coefficients of e, and that the decomposition of e leads 
to detail coefficients, which are standard Gaussian white noises.

So minimax and SURE threshold selection rules are more conservative and 
would be more convenient when small details of function f lie near the noise 
range. The two other rules remove the noise more efficiently. The option 
'heursure' is a compromise. In this example, the fixed form threshold wins.

Recalling step 2 of the de-noise procedure, the function thselect performs a 
threshold selection, and then each level is thresholded. This second step can be 
done using wthcoef, directly handling the wavelet decomposition structure of 
the original signal s.
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Dealing with Unscaled Noise and Nonwhite Noise
Usually in practice the basic model cannot be used directly. We examine here 
the options available to deal with model deviations in the main de-noising 
function wden.

The simplest use of wden is

sd = wden(s,tptr,sorh,scal,n,wav)

which returns the de-noised version sd of the original signal s obtained using 
the tptr threshold selection rule. Other parameters needed are sorh, scal, n, 
and wav. The parameter sorh specifies the thresholding of details coefficients 
of the decomposition at level n of s by the wavelet called wav. The remaining 
parameter scal is to be specified. It corresponds to threshold’s rescaling 
methods.

• Option scal = 'one' corresponds to the basic model.

• In general, you can ignore the noise level and it must be estimated. The 
detail coefficients cD1 (the finest scale) are essentially noise coefficients with 
standard deviation equal to σ. The median absolute deviation of the 
coefficients is a robust estimate of σ. The use of a robust estimate is crucial 
for two reasons. The first one is that if level 1 coefficients contain f details, 
then these details are concentrated in a few coefficients if the function f is 
sufficiently regular. The second reason is to avoid signal end effects, which 
are pure artifacts due to computations on the edges.

Option scal = 'sln' handles threshold rescaling using a single estimation 
of level noise based on the first-level coefficients.

Option Corresponding Model

'one' Basic model

'sln' Basic model with unscaled noise

'mln' Basic model with non-white noise
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• When you suspect a nonwhite noise e, thresholds must be rescaled by a 
level-dependent estimation of the level noise. The same kind of strategy as 
in the previous option is used by estimating σlev level by level. 

This estimation is implemented in M-file wnoisest, directly handling the 
wavelet decomposition structure of the original signal s.

Option scal = 'mln' handles threshold rescaling using a level-dependent 
estimation of the level noise.

For a more general procedure, the wdencmp function performs wavelet 
coefficients thresholding for both de-noising and compression purposes, while 
directly handling one-dimensional and two-dimensional data. It allows you to 
define your own thresholding strategy selecting in

 xd = wdencmp(opt,x,wav,n,thr,sorh,keepapp);

where

• opt = 'gbl' and thr is a positive real number for uniform threshold.

• opt = 'lvd' and thr is a vector for level dependent threshold.

• keepapp = 1 to keep approximation coefficients, as previously and

• keepapp = 0 to allow approximation coefficients thresholding.

• x is the signal to be de-noised and wav, n, sorh are the same as above.

De-Noising in Action
We begin with examples of one-dimensional de-noising methods with the first 
example credited to Donoho and Johnstone. You can use the following M-file to 
get the first test function using wnoise.

% Set signal to noise ratio and set rand seed. 
sqrt_snr = 4; init = 2055615866;

% Generate original signal xref and a noisy version x adding 
% a standard Gaussian white noise. 
[xref,x] = wnoise(1,11,sqrt_snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding 
% and scaled noise option, on detail coefficients obtained 
% from the decomposition of x, at level 3 by sym8 wavelet. 
xd = wden(x,'heursure','s','one',3,'sym8');
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Figure 6-29:  Blocks Signal De-Noising

Since only a small number of large coefficients characterize the original signal, 
the method performs very well (see Figure 6-29 above). If you want to see more 
about how the thresholding works, use the GUI (see “De-Noising Signals” on 
page 3-18).

As a second example, let us try the method on the highly perturbed part of the 
electrical signal studied above.

According to this previous analysis, let us use db3 wavelet and decompose at 
level 3. 

To deal with the composite noise nature, let us try a level-dependent noise size 
estimation.
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% Load electrical signal and select part of it. 
load leleccum; indx = 2000:3450; 
x = leleccum(indx);

% Find first value in order to avoid edge effects. 
deb = x(1);

% De-noise signal using soft fixed form thresholding 
% and unknown noise option. 
xd = wden(x-deb,'sqtwolog','s','mln',3,'db3')+deb;

Figure 6-30:  Electrical Signal De-Noising

The result is quite good in spite of the time heterogeneity of the nature of the 
noise after and before the beginning of the sensor failure around time 2450.
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Extension to Image De-Noising
The de-noising method described for the one-dimensional case applies also to 
images and applies well to geometrical images. A direct translation of the 
one-dimensional model is

where e is a white Gaussian noise with unit variance.

The two-dimensional de-noising procedure has the same three steps and uses 
two-dimensional wavelet tools instead of one-dimensional ones. For the 
threshold selection, prod(size(s)) is used instead of length(s) if the fixed 
form threshold is used.

Note that except for the “automatic” one-dimensional de-noising case, 
de-noising and compression are performed using wdencmp. As an example, you 
can use the following M-file illustrating the de-noising of a real image.

% Load original image. 
load  woman

% Generate noisy image.
init = 2055615866; randn('seed',init); 
x = X + 15*randn(size(X));

% Find default values. In this case fixed form threshold
% is used with estimation of level noise, thresholding
% mode is soft and the approximation coefficients are 
% kept.
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% thr is equal to estimated_sigma*sqrt(log(prod(size(X))))
thr 

thr =

  107.6428

% De-noise image using global thresholding option.
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);
% Plots.
colormap(pink(255)), sm = size(map,1);

s i j,( ) f i j,( ) σe i j,( )+=



Wavelet Applications: More Detail

6-109

subplot(221), image(wcodemat(X,sm)), title('Original Image')
subplot(222), image(wcodemat(x,sm)), title('Noisy Image')
subplot(223), image(wcodemat(xd,sm)), title('De-Noised Image')

The result shown below is acceptable.

Figure 6-31:  Image De-Noising

One-Dimensional Variance Adaptive Thresholding of Wavelet Coefficients
Local thresholding of wavelet coefficients, for one- or two-dimensional data, is 
a capability available from a lot of graphical interface tools throughout Wavelet 
Toolbox™ software (see “Using Wavelets” on page 2-1). 

The idea is to define level by level time-dependent thresholds, and then 
increase the capability of the de-noising strategies to handle nonstationary 
variance noise models. 

More precisely, the model assumes (as previously) that the observation is equal 
to the interesting signal superimposed on a noise (see “De-Noising” on 
page 6-99).
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But the noise variance can vary with time. There are several different variance 
values on several time intervals. The values as well as the intervals are 
unknown.

Let us focus on the problem of estimating the change points or equivalently the 
intervals. The algorithm used is based on an original work of Marc Lavielle 
about detection of change points using dynamic programming (see [Lav99] in 
“References” on page 6-152).

Let us generate a signal from a fixed-design regression model with two noise 
variance change points located at positions 200 and 600. 

% Generate blocks test signal.
x = wnoise(1,10);       

% Generate noisy blocks with change points.
init = 2055615866; randn('seed',init);
bb = randn(1,length(x));
cp1 = 200; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/3,bb(cp2+1:end)];

The aim of this example is to recover the two change points from the signal x. 
In addition, this example illustrates how the GUI tools (see “Using Wavelets” 
on page 2-1) locate the change points for interval dependent thresholding.

Step 1. Recover a noisy signal by suppressing an approximation.

% Perform a single-level wavelet decomposition 
% of the signal using db3.
wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);

% Reconstruct detail at level 1.
det = wrcoef('d',c,l,wname,1);

The reconstructed detail at level 1 recovered at this stage is almost signal free. 
It captures the main features of the noise from a change points detection 
viewpoint if the interesting part of the signal has a sparse wavelet 
representation. To remove almost all the signal, we replace the biggest values 
by the mean. 

Step 2. To remove almost all the signal, replace 2% of biggest values by the 
mean.



Wavelet Applications: More Detail

6-111

x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

Step 3. Use the wvarchg function to estimate the change points with the 
following parameters:

• The minimum delay between two change points is d = 10.

• The maximum number of change points is 5. 
[cp_est,kopt,t_est] = wvarchg(det,5)
cp_est =

199   601

kopt =
2

t_est =
1024 0 0 0 0 0
601 1024 0 0 0 0
199 601 1024 0 0 0
199 261 601 1024 0 0
207 235 261 601 1024 0
207 235 261 393 601 1024

Two change points and three intervals are proposed. Since the three interval 
variances for the noise are very different the optimization program detects 
easily the correct structure.

The estimated change points are close to the true change points: 200 and 600.

Step 4. (Optional) Replace the estimated change points.

For 2 ≤ i ≤ 6, t_est(i,1:i-1) contains the i-1 instants of the variance 
change points, and since kopt is the proposed number of change points; then

cp_est = t_est(kopt+1,1:kopt);

You can replace the estimated change points by computing

% cp_New = t_est(knew+1,1:knew); % where 1 ≤ knew ≤ 5
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More About De-Noising
The de-noising methods based on wavelet decomposition appear mainly 
initiated by Donoho and Johnstone in the USA, and Kerkyacharian and Picard 
in France. Meyer considers that this topic is one of the most significant 
applications of wavelets (cf. [Mey93] page 173). This chapter and the 
corresponding M-files follow the work of the above mentioned researchers. 
More details can be found in Donoho’s references in the section “References” on 
page 6-152 and in the section “More About the Thresholding Strategies” on 
page 6-128.

Data Compression
The compression features of a given wavelet basis are primarily linked to the 
relative scarceness of the wavelet domain representation for the signal. The 
notion behind compression is based on the concept that the regular signal 
component can be accurately approximated using the following elements: a 
small number of approximation coefficients (at a suitably chosen level) and 
some of the detail coefficients.

Like de-noising, the compression procedure contains three steps:

1 Decompose

Choose a wavelet, choose a level N. Compute the wavelet decomposition of 
the signal s at level N.

2 Threshold detail coefficients

For each level from 1 to N, a threshold is selected and hard thresholding is 
applied to the detail coefficients.

3 Reconstruct

Compute wavelet reconstruction using the original approximation 
coefficients of level N and the modified detail coefficients of levels from 
1 to N.

The difference of the de-noising procedure is found in step 2. There are two 
compression approaches available. The first consists of taking the wavelet 
expansion of the signal and keeping the largest absolute value coefficients. In 



Wavelet Applications: More Detail

6-113

this case, you can set a global threshold, a compression performance, or a 
relative square norm recovery performance. 

Thus, only a single parameter needs to be selected. The second approach 
consists of applying visually determined level-dependent thresholds.

Let us examine two real-life examples of compression using global 
thresholding, for a given and unoptimized wavelet choice, to produce a nearly 
complete square norm recovery for a signal (see Figure 6-32 on page 6-114) and 
for an image (see Figure 6-33 on page 6-115).

% Load electrical signal and select a part. 
load leleccum; indx = 2600:3100; 
x = leleccum(indx);

% Perform wavelet decomposition of the signal. 
n = 3; w = 'db3'; 
[c,l] = wavedec(x,n,w);

% Compress using a fixed threshold. 
thr = 35; 
keepapp = 1;
[xd,cxd,lxd,perf0,perfl2] =

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);
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Figure 6-32:  Signal Compression

The result is quite satisfactory, not only because of the norm recovery criterion, 
but also on a visual perception point of view. The reconstruction uses only 15% 
of the coefficients.

% Load original image. 
load woman; x = X(100:200,100:200); 
nbc = size(map,1);

% Wavelet decomposition of x. 
n = 5; w = 'sym2'; [c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding. 
thr = 20; 
keepapp =1;
[xd,cxd,lxd,perf0,perfl2] =

wdencmp('gbl',c,l,w,n,thr,'h',keepapp);

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100
150

200

250

300

350

400

450
Original signal

2600 2650 2700 2750 2800 2850 2900 2950 3000 3050 3100
150

200

250

300

350

400

450
Compressed signal

2−norm rec.: 99.95 %  −− zero cfs: 85.08 



Wavelet Applications: More Detail

6-115

Figure 6-33:  Image Compression

If the wavelet representation is too dense, similar strategies can be used in the 
wavelet packet framework to obtain a sparser representation. You can then 
determine the best decomposition with respect to a suitably selected 
entropy-like criterion, which corresponds to the selected purpose (de-noising or 
compression).

Compression Scores
When compressing using orthogonal wavelets, the Retained energy in 
percentage is defined by

When compressing using biorthogonal wavelets, the previous definition is not 
convenient. We use instead the Energy ratio in percentage defined by

and as a tuning parameter the Norm cfs recovery defined by
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100*(vector-norm(coeffs of the current decomposition,2))2

(vector-norm(original signal,2))2
--------------------------------------------------------------------------------------------------------------------------------------------------------------

100*(vector-norm(compressed signal,2))2

(vector-norm(original signal,2))2
-----------------------------------------------------------------------------------------------------------------
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The Number of zeros in percentage is defined by

Function Estimation: Density and Regression
In this section we present two problems of functional estimation:

• Density estimation

• Regression estimation

Note  According to the classical statistical notations, in this section,  
denotes the estimator of the function g instead of the Fourier transform of g.

Density Estimation
The data are values (X(i), 1 ≤ i ≤ n) sampled from a distribution whose 
density is unknown. We are looking for an estimate of this density.

What Is Density.

The well known histogram creates the information on the density distribution 
of a set of measures. At the very beginning of the 19th century, Laplace, a 
French scientist, repeating sets of observations of the same quantity, was able 
to fit a simple function to the density distribution of the measures. This 
function is called now the Laplace-Gauss distribution.

Density Applications.

Density estimation is a core part of reliability studies. It permits the evaluation 
of the life-time probability distribution of a TV set produced by a factory, the 
computation of the instantaneous availability, and of such other useful 
characteristics as the mean time to failure. A very similar situation occurs in 
survival analysis, when studying the residual lifetime of a medical treatment. 

100*(vector-norm(coeffs of the current decomposition,2))2

(vector-norm(coeffs of the original decomposition,2))2
--------------------------------------------------------------------------------------------------------------------------------------------------------------

100*(number of zeros of the current decomposition)
(number of coefficients)

----------------------------------------------------------------------------------------------------------------------------------------------

ĝ



Wavelet Applications: More Detail

6-117

Density Estimators.

As in the regression context, the wavelets are useful in a nonparametric 
context, when very little information is available concerning the shape of the 
unknown density, or when you don’t want to tell the statistical estimator what 
you know about the shape.

Several alternative competitors exist. The orthogonal basis estimators are 
based on the same ideas as the wavelets. Other estimators rely on statistical 
window techniques such as kernel smoothing methods.

We have theorems proving that the wavelet-based estimators behave at least 
as well as the others, and sometimes better. When the density h(x) has 
irregularities, such as a breakdown point or a breakdown point of the 
derivative h’(x), the wavelet estimator is a good solution.

How to Perform Wavelet-Based Density Estimation.

The key idea is to reduce the density estimation problem to a fixed-design 
regression model. More precisely the main steps are as follows:

1 Transform the sample X into (Xb, Yb) data where the Xb are equally spaced, 
using a binning procedure. For each bin i, Yb(i) = number of X(j) within 
bin i.

2 Perform a wavelet decomposition of Yb viewed as a signal, using fast 
algorithm. Thus, the underlying Xb data is 1, 2, ..., nb where nb is the 
number of bins.

3 Threshold the wavelet coefficients according to one of the methods described 
for de-noising (see “De-Noising” on page 6-99).

4 Reconstruct an estimate h1 of the density function h from the thresholded 
wavelet coefficients using fast algorithm (see “The Fast Wavelet Transform 
(FWT) Algorithm” on page 6-20).

5 Postprocess the resulting function h1. Rescale the resulting function 
transforming 1, 2, ..., nb into Xb and interpolate h1 for each bin to calculate 
hest(X). 

Steps 2 through 4 are standard wavelet-based steps. But the first step of this 
estimation scheme depends on nb (the number of bins), which can be viewed as 
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a bandwidth parameter. In density estimation, nb is generally small with 
respect to the number of observations (equal to the length of X), since the 
binning step is a pre-smoother. A typical default value is nb = length(X) / 4.

For more information, you can refer for example to [AntP98], [HarKPT98], and 
[Ogd97] in “References” on page 6-152.

A More Technical Viewpoint.

Let us be a little more formal.

Let X1, X2, ... , Xn be a sequence of independent and identically distributed 
random variables, with a common density function .

This density h is unknown and we want to estimate it. We have very little 
information on h.

For technical reasons we suppose that  is finite. This allows us to 
express h in the wavelet basis.

We know that in the basis of functions  and  with usual notations, J being 
an integer,

The estimator  will use some wavelet coefficients. The rationale for 
the estimator is the following.

To estimate h, it is sufficient to estimate the coordinates  and the .

We shall do it now.

We know the definition of the coefficients:
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The expression of the  has a very funny interpretation. Because h is a 

density  is , the mean value of the random variable 

.

Usually such an expectation is estimated very simply by the mean value:

Of course the same kind of formula holds true for the :

With a finite set of n observations, it is possible to estimate only a finite set of 
coefficients, those belonging to the levels from J-j0 up to J, and to some 
positions k.

Besides, several values of the  are not significant and are to be set to 0.

The values , lower than a threshold t, are set to 0 in a very similar manner 
as the de-noising process and for almost the same reasons.

Inserting these expressions into the definition of h, we get an estimator:

This kind of estimator avoids the oscillations that would occur if all the detail 
coefficients would have been kept.

From the computational viewpoint, it is difficult to use a quick algorithm 
because the Xi values are not equally spaced.

Note that this problem can be overcome.
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Let’s introduce the normalized histogram  of the values of X, having nb 
classes, where the centers of the bins are collected in a vector Xb, the 
frequencies of Xi within the bins are collected in a vector Yb and then 

 on the r-th bin

We can write, using ,

where  is the length of each bin.

The signs  occur because we lose some information when using histogram 
instead of the values Xi and when approximating the integral.

The last  sign is very interesting. It means that  is, up to the constant c, 
the wavelet coefficient of the function  associated with the level j and the 
position k. The same result holds true for the .

So, the last  sign of the previous equation shows that the coefficients  
appear also to be (up to an approximation) wavelet coefficients — those of the 
decomposition of the sequence . If some of the coefficients at level J are 
known or computed, the Mallat algorithm computes the others quickly and 
simply.

And now we are able to finish computing  when the  and the  have 
been computed.

The trick is the transformation of irregularly spaced X values into equally 
spaced values by a process similar to the histogram computation, and that is 
called binning.

You can see the different steps of the procedure using the Density Estimation 
Graphical User Interface, by typing

wavemenu 

and clicking the Density Estimation 1-D option.
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Regression Estimation 

What Is Regression?

The regression problem belongs to the family of the most common practical 
questions. The goal is to get a model of the relationship between one variable 
Y and one or more variables X. The model gives the part of the variability of Y 
taken in account or explained by the variation of X. A function f represents the 
central part of the knowledge. The remaining part is dedicated to the residuals, 
which are similar to a noise. The model is Y = f(X)+e.

Regression Models.

The simplest case is the linear regression Y = aX+b+e where the function f is 
affine. A case a little more complicated occurs when the function belongs to a 
family of parametrized functions as f(X) = cos (w X), the value of w being 
unknown. Statistics Toolbox™ software provides tools for the study of such 
models. When f is totally unknown, the problem of the nonlinear regression is 
said to be a nonparametric problem and can be solved either by using usual 
statistical window techniques or by wavelet based methods.

Regression Applications.

These regression questions occur in many domains. For example:

• Metallurgy, where you can try to explain the tensile strength by the carbon 
content

• Marketing, where the house price evolution is connected to an economical 
index

• Air-pollution studies, where you can explain the daily maximum of the ozone 
concentration by the daily maximum of the temperature

Two designs are distinguished: the fixed design and the stochastic design. The 
difference concerns the status of X. 

Fixed-Design Regression.

When the X values are chosen by the designer using a predefined scheme, as 
the days of the week, the age of the product, or the degree of humidity, the 
design is a fixed design. Usually in this case, the resulting X values are equally 
spaced. When X represents time, the regression problem can be viewed as a 
de-noising problem.
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Stochastic Design Regression.

When the X values result from a measurement process or are randomly chosen, 
the design is stochastic. The values are often not regularly spaced. This 
framework is more general since it includes the analysis of the relationship 
between a variable Y and a general variable X, as well as the analysis of the 
evolution of Y as a function of time X when X is randomized.

How to Perform Wavelet-Based Regression Estimation.

The key idea is to reduce a general problem of regression to a fixed-design 
regression model. More precisely the main steps are as follows:

1 Transform (X,Y) data into (Xb,Yb) data where the Xb are equally spaced, 
using a binning procedure. For each bin i, 

,

with the convention .

2 Perform a wavelet decomposition of Yb viewed as a signal using fast 
algorithm. This last sentence means that the underlying Xb data is 
1, 2, ..., nb where nb is the number of bins.

3 Threshold the wavelet coefficients according to one of the methods described 
for de-noising.

4 Reconstruct an estimate f1 of the function f from the thresholded wavelet 
coefficients using fast algorithm.

5 Post-process the resulting function f1. Rescale the resulting function f1 
transforming 1, 2, ..., nb onto Xb and interpolate f1 for each bin in order to 
calculate fest(x). 

Steps 2 through 4 are standard wavelet-based steps. But the first step of this 
estimation scheme depends on the number of bins, which can be viewed as a 
bandwidth parameter. Generally, the value of nb is not chosen too small with 
respect to the number of observations, since the binning step is a presmoother.

For more information, you can refer for example to [AntP98], [HarKPT98], and 
[Ogd97]. See “References” on page 6-152.

Yb i )( ) sum Y j( ) such that X j( ) lies in bin i{ }
number Y j( ) such that X j( ) lies in bin i{ }
--------------------------------------------------------------------------------------------------------------------=

0
0
--- 0=
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A More Technical Viewpoint.

The regression problem goes along the same lines as the density estimation. 
The main differences, of course, concern the model.

There is another difference with the density step: we have here two variables 
X and Y instead of one in the density scheme.

The regression model is  where  is a sequence of 
independent and identically distributed (i.i.d.) random variables and where the 

 are randomly generated according to an unknown density h.

Also, let us assume that  is a sequence of i.i.d. random 
variables.

The function f is unknown and we look for an estimator .

We introduce the function . So  with the convention .

We could estimate g by a certain and, from the density part, an , and then 

use . We choose to use the estimate of h given by the histogram suitably 

normalized.

Let us bin the X-values into nb bins. The l-th bin-center is called Xb(l), the 
number of X-values belonging to this bin is n(l). Then, we define Yb(l) by the 
sum of the Y-values within the bin divided by n(l). 

Let’s turn to the f estimator. We shall apply the technique used for the density 
function. The coefficients of f, are estimated by

We get approximations of the coefficients by the following formula that can be 
written in a form proving that the approximated coefficients are also the 
wavelet decomposition coefficients of the sequence Yb:

Yi f Xi( ) εi+= εi( )1 i n≤ ≤

Xi( )

X1 Y1,( ) … Xn Yn,( ), ,

fˆ

g f h⋅= f g
h
---=

0
0
--- 0=
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The usual simple algorithms can be used. 

You can see the different steps of the procedure using the Regression 
Estimation Graphical User Interface by typing wavemenu, and clicking the 
Regression Estimation 1-D option.

d
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Available Methods for De-Noising, Estimation, and 
Compression Using GUI Tools
This section presents the predefined strategies available using the de-noising, 
estimation, and compression GUI tools. 

One-Dimensional DWT and SWT De-Noising 
Level-dependent or interval-dependent thresholding methods are available. 
Predefined thresholding strategies: 

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are

- Donoho-Johnstone methods: Fixed-form (default), Heursure, Rigsure, 
Minimax

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

The last three choices include a sparsity parameter a (a > 1).

Using this strategy the defaults are a = 6.25, 2, and 1.5, respectively, and 
the thresholding mode is hard. Only scaled and unscaled white noise 
options are supported.

One-Dimensional DWT Compression

1 Level-dependent or interval-dependent hard thresholding methods are 
available. Predefined thresholding strategies are

- Birgé-Massart method: Scarce high (default), Scarce medium, Scarce low

This method includes a sparsity parameter a (1 < a < 5). Using this 
strategy the default is a = 1.5. 

- Empirical methods

- Equal balance sparsity-norm

- Remove near 0

2 Global hard thresholding methods with GUI-driven choice are available. 
Predefined thresholding strategies are
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- Empirical methods

- Balance sparsity-norm (default = equal)

- Remove near 0

Two-Dimensional DWT and SWT De-Noising
Level-dependent and orientation-dependent (horizontal, vertical, and 
diagonal) thresholding methods are available. Predefined thresholding 
strategies are

• Hard or soft (default) thresholding

• Scaled white noise, unscaled white noise (default) or nonwhite noise

• Thresholds values are

- Donoho-Johnstone method: Fixed form (default)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

The last three choices include a sparsity parameter a (a > 1). See 
“One-Dimensional DWT and SWT De-Noising” on page 6-125.

- Empirical method: Balance sparsity-norm, default = sqrt

Two-Dimensional DWT Compression
Level-dependent and orientation-dependent (horizontal, vertical, and 
diagonal) thresholding methods are available.

1 Level-dependent or interval-dependent hard thresholding methods are 
available. Predefined thresholding strategies are

- Birgé-Massart method: Scarce high (default); Scarce medium, Scarce low

This method includes a sparsity parameter a (1 < a < 5), the default is 
a = 1.5.

- Empirical methods

- Equal balance sparsity-norm

- Square root of the threshold associated with Equal balance sparsity-norm

- Remove near 0

2 Global hard thresholding methods with GUI-driven choice are available. 
Predefined thresholding strategies are
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- Empirical methods

- Balance sparsity-norm (default = equal); Balance sparsity-norm (sqrt)

- Remove near 0

One-Dimensional Wavelet Packet De-Noising
Global thresholding methods with GUI-driven choice are available. Predefined 
thresholding strategies are

• Hard or soft (default) thresholding

• Thresholds values:

- Donoho-Johnstone methods: Fixed form (unscaled noise) (default); Fixed 
form (scaled noise)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

This method includes a sparsity parameter a (a > 1). See 
“One-Dimensional DWT and SWT De-Noising” on page 6-125. 

One-Dimensional Wavelet Packet Compression
Global hard thresholding methods with GUI-driven choice are available. 
Predefined thresholding strategies are 

- Empirical methods

- Balance sparsity-norm (default = equal)

- Remove near 0

Two-Dimensional Wavelet Packet De-Noising
Global thresholding methods with GUI-driven choice are available. Predefined 
thresholding strategies are

• Hard or soft (default) thresholding

• Thresholds values:

- Donoho-Johnstone methods: Fixed form (unscaled noise) (default); Fixed 
form (scaled noise)

- Birgé-Massart method: Penalized high, Penalized medium, Penalized low

The last three choices include a sparsity parameter a (a > 1). See 
“One-Dimensional DWT and SWT De-Noising” on page 6-125. 

- Empirical method: Balance sparsity-norm (sqrt)
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Two-Dimensional Wavelet Packet Compression
Global thresholding methods with GUI-driven choice are available. Predefined 
thresholding strategies are

- Empirical methods

- Balance sparsity-norm (default = equal), Balance sparsity-norm (sqrt)

- Remove near 0

One-Dimensional Regression Estimation
A preliminary histogram estimator (binning) is used, and then the predefined 
thresholding strategies described in “One-Dimensional DWT and SWT 
De-Noising” on page 6-125 are available.

Density Estimation
A preliminary histogram estimator (binning) is used, and then the predefined 
thresholding strategies are as follows:

• Global threshold

• By level threshold 1, By level threshold 2, By level threshold 3

The last choice includes a sparsity parameter a (a < 1); the default is 0.6.

More About the Thresholding Strategies
A lot of references are available for this topic of de-noising, estimation, and 
compression. 

For example, [Ant94], [AntP98], [HalPKP97], [AntG99], [Ogd97], [HarKPT98], 
[DonJ94a&b], [DonJKP95], and [DonJKP96] (see “References” on page 6-152). 
A short description of the available methods previously mentioned follows.

Scarce High, Medium, and Low.

These strategies are based on an approximation result from Birgé and Massart 
(for more information, see [BirM97]) and are well suited for compression.

Three parameters characterize the strategy:

• J, the level of the decomposition

• M, a positive constant

• a, a sparsity parameter (a > 1)
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The strategy is such that

• At level J the approximation is kept

• For level j from 1 to J, the nj largest coefficients are kept with

So the strategy leads to select the highest coefficients in absolute value at each 
level, the numbers of kept coefficients grow scarcely with J-j.

Typically, a = 1.5 for compression and a = 3 for de-noising.

A natural default value for M is the length of the coarsest approximation 
coefficients, since the previous formula for j = J+1, leads to M = nJ+1. 

Let L denote the length of the coarsest approximation coefficients in the 1-D 
case and S the size of the coarsest approximation coefficients in the 2-D case. 

Three different choices for M are proposed:

• Scarce high: 

- M = L in the 1-D case

- M = 4*prod(S) in the 2-D case

• Scarce medium:

- M = 1.5*L in the 1-D case

- M = 4*4*prod(S) / 3 in the 2-D case

• Scarce low:

- M = 2*L in the 1-D case

- M = 4*8*prod(S) / 3 in the 2-D case

The related M-files are wdcbm, wdcbm2, and wthrmngr (for more information, see 
the corresponding reference pages).

Penalized High, Medium, and Low.

These strategies are based on a recent de-noising result by Birgé and Massart, 
and can be viewed as a variant of the fixed form strategy (see the section 
“De-Noising” on page 6-99) of the wavelet shrinkage. 

The threshold T applied to the detail coefficients for the wavelet case or the 
wavelet packet coefficients for a given fixed WP tree, is defined by

nj
M

J 2 j–+( )a
-----------------------------=
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with

where

• The sparsity parameter a > 1

• The coefficients c(k) are sorted in decreasing order of their absolute value

• v is the noise variance

Three different intervals of choices for the sparsity parameter a are proposed:

• Penalized high, 2.5 ≤ a < 10

• Penalized medium, 1.5 < a < 2.5

• Penalized low, 1 < a < 2

The related M-files are wbmpen, wpbmpen, and wthrmngr (for more information, 
see the corresponding reference pages).

Remove Near 0.

Let c denote the detail coefficients at level 1 obtained from the decomposition 
of the signal or the image to be compressed, using db1. The threshold value is 
set to median(abs(c)) or to 0.05*max(abs(c)) if median(abs(c)) = 0.

The related M-files are ddencmp and wthrmngr (for more information, see the 
corresponding reference pages).

Balance Sparsity-Norm.

Let c denote all the detail coefficients; two curves are built associating, for each 
possible threshold value t, two percentages:

• The 2-norm recovery in percentage

• The relative sparsity in percentage, obtained from the compressed signal by 
setting to 0 the coefficients less than t in absolute value

T c t*( )=

t* argmin sum c2 k( ) k t<,{ }– 2vt a n
t
---⎝ ⎠
⎛ ⎞log+⎝ ⎠

⎛ ⎞  t 1 … n, ,=;+=
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A default is provided for the 1-D case taking t such that the two percentages 
are equal. Another one is obtained for the 2-D case by taking the square root of 
the previous t.

The related M-file is wthrmngr (for more information, see the corresponding 
reference page).

Fixed Form.

This thresholding strategy comes from Donoho-Johnstone (see “References” on 
page 6-152 and the 'sqtwolog' option of the wden function in “De-Noising” on 
page 6-99). The universal threshold is of the following form:

• DWT or SWT 1-D,  where n is the signal length and s is the 
noise standard deviation

• DWT or SWT 2-D,  where [n,m] is the image size

• WP 1-D, 

• WP 2-D, 

The related M-files are ddencmp, thselect, wden, wdencmp, and wthrmngr (for 
more information, see the corresponding reference pages).

Heursure, Rigsure, and Minimax.

These methods are available for 1-D de-noising tools and come from 
Donoho-Johnstone (see “References” on page 6-152).

The related M-files are thselect, wden, wdencmp, and wthrmngr (for more 
information, see the corresponding reference pages).

Global, and By level 1, 2, 3.

These options are dedicated to the density estimation problem. 

See [HalPKP97], [AntG99], [Ogd97], and [HarKPT98] in “References” on 
page 6-152 for more details.

Note that

• c is all the detail coefficients of the binned data.

• d(j) is the detail coefficients at level j.

• n is the number of bins chosen for the preliminary estimator (binning).

t s 2 n( )log=

t s 2 nm( )log=

t s 2 n n( ) 2( )log( )⁄log( )log=

t s 2 nm nm( ) 2( )log( )⁄log( )log=
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Then, these options are defined as follows:

1 Global:

Threshold value is set to .

2 By level 1:

Level dependent thresholds T(j) are defined by .

3 By level 2:

Level dependent thresholds T(j) are defined by .

4 By level 3:

Level dependent thresholds T(j) are defined by ,

where a is a sparsity parameter (  is the default).

max c( ) n( )log
n

-----------------×

0.4 max d j( )( )×

0.8 max d j( )( )×

a max d j( )( )×

0.2 a 1 a,≤< 0.6=
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Wavelet Packets
The wavelet packet method is a generalization of wavelet decomposition that 
offers a richer signal analysis.

Wavelet packet atoms are waveforms indexed by three naturally interpreted 
parameters: position, scale (as in wavelet decomposition), and frequency.

For a given orthogonal wavelet function, we generate a library of bases called 
wavelet packet bases. Each of these bases offers a particular way of coding 
signals, preserving global energy, and reconstructing exact features. The 
wavelet packets can be used for numerous expansions of a given signal. We 
then select the most suitable decomposition of a given signal with respect to an 
entropy-based criterion.

There exist simple and efficient algorithms for both wavelet packet 
decomposition and optimal decomposition selection. We can then produce 
adaptive filtering algorithms with direct applications in optimal signal coding 
and data compression.

From Wavelets to Wavelet Packets: Decomposing 
the Details
In the orthogonal wavelet decomposition procedure, the generic step splits the 
approximation coefficients into two parts. After splitting we obtain a vector of 
approximation coefficients and a vector of detail coefficients, both at a coarser 
scale. The information lost between two successive approximations is captured 
in the detail coefficients. Then the next step consists of splitting the new 
approximation coefficient vector; successive details are never reanalyzed.

In the corresponding wavelet packet situation, each detail coefficient vector is 
also decomposed into two parts using the same approach as in approximation 
vector splitting. This offers the richest analysis: the complete binary tree is 
produced as shown in the following figure.
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Figure 6-34:  Wavelet Packet Decomposition Tree at Level 3

The idea of this decomposition is to start from a scale-oriented decomposition, 
and then to analyze the obtained signals on frequency subbands.

Wavelet Packets in Action: an Introduction
The following simple examples illustrate certain differences between wavelet 
analysis and wavelet packet analysis.

Example 1: Analyzing a Sine Function
The signal to be analyzed, called sinper8, is a 256-length sampled sine 
function of period 8. The Haar wavelet is used to decompose the signal at 
level 7. 

The following figure contains the “time-frequency” plot (x-axis is time and 
y-axis is frequency, high to low from the top to the bottom) for the wavelet 
decomposition (on the left) and for the wavelet packet decomposition (on the 
right).

Wavelet decomposition localizes the period of the sine within the interval 
[8,16]. Wavelet packets provide a more precise estimation of the actual period.

How to Obtain and Explain These Graphs?

You can reproduce these graphs by typing at the MATLAB® prompt

wavemenu

S

A1 D1

AA2 DA2

AAA3 DAA3

AD2 DD2

ADA3 DDA3 AAD3 DAD3 ADD3 DDD3
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Then click the Wavelet Packet 1-D option and select the Example Analysis 
using the sinper8 demo signal. For more information on using this GUI tool, 
see the section “One-Dimensional Wavelet Packet Analysis” on page 5-7.

The length of the WP tree leaves is 2; there are 128 leaves, labeled from (7,0) 
to (7,127) and indexed from 127 to 254. 

The associated wavelet tree (click the Wavelet Tree button) is obviously 
simpler than the wavelet packet tree. There are eight leaves labeled (7,0), (7,1), 
(6,1), . . . (2,1), (1,1). 

The Colored Coefficients for Terminal Nodes graph deserves explanation. In 
principle the graphic displays eight stripes. When using Global + abs, only four 
seem to be present. In fact, the eight are drawn. As the values of several 
coefficients are close to 0, the stripes are merged and only four can be seen. The 
eight stripes are recovered when using the option By level + abs. 

Getting back to the Colored Coefficients for Terminal Nodes graph of the 
initial tree, with cool colormap, two stripes are present. By zooming in, we 
determine their WP index or position:

• Stripe 1: index 175 or position (7,48) and index 143 or position (7,16)

• Stripe 2: index 207 or position (7,80) and index 239 or position (7,112)

Using the two sliders of the Decomposition Tree graphic, we can visualize the 
coefficients or the reconstructed signals corresponding to these four leaves.
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Figure 6-35:  Wavelets (Left) Versus Wavelet Packets (Right): a Sine Function

Wavelet frequency localization Wavelet packets frequency localization
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Example 2: Analyzing a Chirp Signal
The signal to be analyzed is a chirp: an oscillatory signal with increasing 
modulation sin (250πt2) sampled 512 times on [0, 1]. For this “linear” chirp, the 
derivative of the phase is linear. On the left of Figure 6-36, a wavelet analysis 
does not easily detect this time-frequency property of the signal. But on the 
right of Figure 6-36, the linear slope for the greatest wavelet packet coefficients 
in absolute value is obvious. The same experiment can be done with a 
“quadratic” chirp of the form sin (kπt3) in which the greatest wavelet packet 
coefficients exhibit a quadratic time frequency pattern.

Figure 6-36:  Wavelets (Left) Versus Wavelet Packets (Right): Damped 
Oscillations
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Building Wavelet Packets
The computation scheme for wavelet packets generation is easy when using an 
orthogonal wavelet. We start with the two filters of length 2N, where h(n) and 
g(n), corresponding to the wavelet. 

Now by induction let us define the following sequence of functions: 

(Wn(x), n = 0, 1, 2, ...) 

by

where W0(x) = φ(x) is the scaling function and W1(x) = ψ(x) is the wavelet 
function.

For example for the Haar wavelet we have

 

and

The equations become

 

and 

W0(x) = φ(x) is the Haar scaling function and W1(x) = ψ(x) is the Haar 
wavelet, both supported in [0, 1]. Then we can obtain W2n by adding two 

W2n x( ) 2 h k( )Wn 2x k–( )
k 0=

2N 1–

∑=

W2n 1+ x( ) 2 g k( )Wn 2x k–( )
k 0=

2N 1–

∑=

N 1 h 0( ), h 1( ) 1
2

-------= = =

g 0( ) g 1( )–
1
2

-------= =

W2n x( ) Wn 2x( ) Wn 2x 1–( )+=

W2n 1+ x( ) Wn 2x( ) Wn 2x 1–( )–=
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1/2-scaled versions of Wn with distinct supports [0,1/2] and [1/2,1] and obtain 
W2n+1 by subtracting the same versions of Wn.

For n = 0 to 7, we have the W-functions shown below.

Figure 6-37:  The Haar Wavelet Packets

This can be obtained using the following command:

[wfun,xgrid] = wpfun('db1',7,5);

which returns in wfun the approximate values of Wn for n = 0 to 7, computed on

a 1/25 grid of the support xgrid.

Starting from more regular original wavelets and using a similar construction, 
we obtain smoothed versions of this system of W-functions, all with support in 
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the interval [0, 2N-1]. Figure 6-38, below, presents the system of W-functions 
for the original db2 wavelet.

Figure 6-38:  The db2 Wavelet Packets

Wavelet Packet Atoms
Starting from the functions and following the same line leading 
to orthogonal wavelets, we consider the three-indexed family of analyzing 
functions (the waveforms):

where  and .

As in the wavelet framework, k can be interpreted as a time-localization 
parameter and j as a scale parameter. So what is the interpretation of n?
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The basic idea of the wavelet packets is that for fixed values of j and k, Wj,n,k 

analyzes the fluctuations of the signal roughly around the position , at the 

scale  and at various frequencies for the different admissible values of the 
last parameter n.

In fact, examining carefully the wavelet packets displayed in Figure 6-37 on 
page 6-139 and Figure 6-38 on page 6-140, the naturally ordered Wn for n = 0, 
1, ..., 7, does not match exactly the order defined by the number of oscillations. 
More precisely, counting the number of zero crossings (up-crossings and 
down-crossings) for the db1 wavelet packets, we have the following.

So, to restore the property that the main frequency increases monotonically 
with the order, it is convenient to define the frequency order obtained from the 
natural one recursively.

As can be seen in the previous figures, Wr(n)(x) “oscillates” approximately n 
times. 

To analyze a signal (the chirp of example 2 for instance), it is better to plot the 
wavelet packet coefficients following the frequency order (on the right of 
Figure 6-39) from the low frequencies at the bottom to the high frequencies at 
the top, rather than naturally ordered coefficients (on the left of Figure 6-39).

Natural order n 0 1 2 3 4 5 6 7

Number of zero crossings for 
db1 Wn

2 3 5 4 9 8 6 7

Natural order n 0 1 2 3 4 5 6 7

Frequency order r(n) 0 1 3 2 6 7 5 4

2j k⋅

2j
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Figure 6-39:  Natural and Frequency Ordered Wavelet Packets Coefficients

When plotting the coefficients, the various options related to the “Frequency” 
or “Natural” order choice are available using the GUI tools.

These options are also available from the command line mode when using the 
wpviewcf function.
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Organizing the Wavelet Packets
The set of functions Wj,n = (Wj,n,k(x), ) is the (j,n) wavelet packet. For 
positive values of integers j and n, wavelet packets are organized in trees. The 
tree in Figure 6-40 is created to give a maximum level decomposition equal to 
3. For each scale j, the possible values of parameter n are 0, 1, ..., 2j -1.

Figure 6-40:  Wavelet Packets Organized in a Tree; Scale j Defines Depth and 
Frequency n Defines Position in the Tree

The notation Wj,n, where j denotes scale parameter and n the frequency 
parameter, is consistent with the usual depth-position tree labeling.

We have , and .

It turns out that the library of wavelet packet bases contains the wavelet basis 
and also several other bases. Let us have a look at some of those bases. More 
precisely, let V0 denote the space (spanned by the family W0,0) in which the 
signal to be analyzed lies; then (Wd,1; d ≥ 1) is an orthogonal basis of V0.

For every strictly positive integer D, (WD,0, (Wd,1; 1 ≤ d ≤ D)) is an orthogonal 
basis of V0.
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We also know that the family of functions {(Wj+1,2n),(Wj+1,2n+1)} is an 
orthogonal basis of the space spanned by Wj,n, which is split into two 
subspaces: Wj+1,2n spans the first subspace, and Wj+1,2n+1 the second one.

This last property gives a precise interpretation of splitting in the wavelet 
packet organization tree, because all the developed nodes are of the form shown 
in the figure below.

Figure 6-41:  Wavelet Packet Tree: Split and Merge

It follows that the leaves of every connected binary subtree of the complete tree 
correspond to an orthogonal basis of the initial space. 

For a finite energy signal belonging to V0, any wavelet packet basis will provide 
exact reconstruction and offer a specific way of coding the signal, using 
information allocation in frequency scale subbands.

Choosing the Optimal Decomposition 
Based on the organization of the wavelet packet library, it is natural to count 
the decompositions issued from a given orthogonal wavelet. 

A signal of length N = 2L can be expanded in α different ways, where α is the 
number of binary subtrees of a complete binary tree of depth L. As a result, 

 (see [Mal98] page 323).

As this number may be very large, and since explicit enumeration is generally 
unmanageable, it is interesting to find an optimal decomposition with respect 
to a convenient criterion, computable by an efficient algorithm. We are looking 
for a minimum of the criterion.

Functions verifying an additivity-type property are well suited for efficient 
searching of binary-tree structures and the fundamental splitting. Classical 
entropy-based criteria match these conditions and describe information- 
related properties for an accurate representation of a given signal. Entropy is 

Wj,n

Wj+1,2n Wj+1,2n+1

α 2N 2⁄≥
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a common concept in many fields, mainly in signal processing. Let us list four 
different entropy criteria (see [CoiW92]); many others are available and can be 
easily integrated (type help wentropy). In the following expressions s is the 
signal and (si) are the coefficients of s in an orthonormal basis. 

The entropy E must be an additive cost function such that E(0) = 0 and

• The (nonnormalized) Shannon entropy

 

so

 with the convention 0log(0) = 0.

• The concentration in lp norm with 1 ≤ p 

 

so

• The logarithm of the “energy” entropy

so

 with the convention log(0) = 0.

• The threshold entropy

 if  and 0 elsewhere, so  {i such that } is 
the number of time instants when the signal is greater than a threshold ε.

E s( ) E si( )
i
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E1 si( ) s– i
2 si

2( )log=

E1 s( ) si
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2( )log
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These entropy functions are available using the wentropy M-file.

Example 1: Compute Various Entropies.

1 Generate a signal of energy equal to 1.

s = ones(1,16)*0.25;

2 Compute the Shannon entropy of s.

e1 = wentropy(s,'shannon')
e1 = 2.7726

3 Compute the l1.5 entropy of s, equivalent to norm(s,1.5)1.5.

e2 = wentropy(s,'norm',1.5)
e2 = 2

4 Compute the “log energy” entropy of s.

e3 = wentropy(s,'log energy')
e3 = -44.3614

5 Compute the threshold entropy of s, using a threshold value of 0.24.

e4 = wentropy(s,'threshold', 0.24)
e4 = 16

Example 2: Minimum-Entropy Decomposition.

This simple example illustrates the use of entropy to determine whether a new 
splitting is of interest to obtain a minimum-entropy decomposition.

1 We start with a constant original signal. Two pieces of information are 
sufficient to define and to recover the signal (i.e., length and constant value).

w00 = ones(1,16)*0.25;

2 Compute entropy of original signal.

e00 = wentropy(w00,'shannon')
 e00 = 2.7726

3 Then split w00 using the haar wavelet.

[w10,w11] = dwt(w00,'db1');
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4 Compute entropy of approximation at level 1.

e10 = wentropy(w10,'shannon')
e10 = 2.0794

The detail of level 1, w11, is zero; the entropy e11 is zero. Due to the additivity 
property the entropy of decomposition is given by e10+e11=2.0794. This has to 
be compared to the initial entropy e00=2.7726. We have e10 + e11 < e00, so 
the splitting is interesting.

5 Now split w10 (not w11 because the splitting of a null vector is without 
interest since the entropy is zero).

[w20,w21] = dwt(w10,'db1');

6 We have w20=0.5*ones(1,4) and w21 is zero. The entropy of the 
approximation level 2 is

e20 = wentropy(w20,'shannon')
e20 = 1.3863

Again we have e20 + 0 < e10, so splitting makes the entropy decrease.

7 Then

[w30,w31] = dwt(w20,'db1');
e30 = wentropy(w30,'shannon')

e30 = 0.6931

[w40,w41] = dwt(w30,'db1')
w40 = 1.0000
w41 = 0

e40 = wentropy(w40,'shannon')
e40 = 0

In the last splitting operation we find that only one piece of information is 
needed to reconstruct the original signal. The wavelet basis at level 4 is a 
best basis according to Shannon entropy (with null optimal entropy since 
e40+e41+e31+e21+e11 = 0).
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8 Perform wavelet packets decomposition of the signal s defined in example 1.

t = wpdec(s,4,'haar','shannon');

The wavelet packet tree below shows the nodes labeled with original entropy 
numbers.

Figure 6-42:  Entropy Values

9 Now compute the best tree.

bt = besttree(t);

The best tree is displayed in the figure below. In this case, the best tree 
corresponds to the wavelet tree. The nodes are labeled with optimal entropy.

Figure 6-43:  Optimal Entropy Values
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Some Interesting Subtrees
Using wavelet packets requires tree-related actions and labeling. The 
implementation of the user interface is built around this consideration. For 
more information on the technical details, see the reference pages.

The complete binary tree of depth D corresponding to a wavelet packet 
decomposition tree developed at level D is denoted by WPT.

We have the following interesting subtrees:

We deduce the following definitions of optimal decompositions, with respect to 
an entropy criterion E.

Decomposition Tree Subtree Such That the Set of Leaves Is a Basis

Wavelet packets 
decomposition tree

Complete binary tree: WPT of depth D

Wavelet packets optimal 
decomposition tree

Binary subtree of WPT

Wavelet packets best-level 
tree

Complete binary subtree of WPT

Wavelet decomposition 
tree

Left unilateral binary subtree of WPT of 
depth D

Wavelet best-basis tree Left unilateral binary subtree of WPT

Decompositions Optimal 
Decomposition

Best-Level 
Decomposition

Wavelet packet 
decompositions

Search among 2D 
trees

Search among D trees

Wavelet 
decompositions

Search among D 
trees

Search among D trees
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For any nonterminal node, we use the following basic step to find the optimal 
subtree with respect to a given entropy criterion E (where Eopt denotes the 
optimal entropy value).

with the natural initial condition on the reference tree, Eopt(t) = E(t) for each 
terminal node t.

Wavelet Packets 2-D Decomposition Structure
Exactly as in the wavelet decomposition case, the preceding one-dimensional 
framework can be extended to image analysis. Minor direct modifications lead 
to quaternary tree-related definitions. An example is shown below for depth 2.

Figure 6-44:  Quaternary Tree of Depth 2

Entropy Condition Action on Tree and on Entropy Labeling

 
 

 

E node( ) Eopt c( )

 c child of node
∑≤

If node root≠( ), merge and set  Eopt node( ) E node( )=

E node( ) Eopt c( )

 c child of node
∑> Split and set  Eopt node( ) Eopt c( )

 c child of node
∑=
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Wavelet Packets for Compression and De-Noising
In the wavelet packet framework, compression and de-noising ideas are 
identical to those developed in the wavelet framework. The only new feature is 
a more complete analysis that provides increased flexibility. A single 
decomposition using wavelet packets generates a large number of bases. You 
can then look for the best representation with respect to a design objective, 
using the function besttree with an entropy function. For more details, see 
“Using Wavelet Packets” on page 5-1.
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Preparing to Add a New Wavelet Family
Wavelet Toolbox™ software contains a lot of wavelet families, but by using the 
wavemngr function, you can add new wavelets to the existing ones to implement 
your favorite wavelet or try out one of your own design. The toolbox allows you 
to define new wavelets for use with both the command line functions and the 
graphical interface tools.

Caution This capability must be used carefully, because the toolbox does not 
check that your wavelet meets all the mathematical requisites.

The wavemngr function affords extensive wavelet management. However, this 
chapter focuses only on the addition of a wavelet family. For more complete 
information, see the wavemngr entry in the Reference Guide. 

The wavemngr command permits you to add new wavelets and wavelet families 
to the predefined ones. However, before you can use the wavemngr command to 
add a new wavelet, you must

1 Choose the full name of the wavelet family (fn).

2 Choose the short name of the wavelet family (fsn).

3 Determine the wavelet type (wt).

4 Define the orders of wavelets within the given family (nums).

5 Build a MAT-file or a M-file (file).

6 For wavelets without FIR filters: Define the effective support.

These steps are described below.

Choose the Wavelet Family Full Name
The full name of the wavelet family, fn, must be a string. Predefined wavelet 
family names are Haar, Daubechies, Symlets, Coiflets, BiorSplines, 
ReverseBior, Meyer, DMeyer, Gaussian, Mexican_hat, Morlet, Complex 
Gaussian, Shannon, Frequency B-Spline, and Complex Morlet.
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Choose the Wavelet Family Short Name
The short name of the wavelet family, fsn, must be a string of four characters 
or less. Predefined wavelet family short names are haar, db, sym, coif, bior, 
rbio, meyr, dmey, gaus, mexh, morl, cgau, fbsp, and cmor.

Determine the Wavelet Type
We distinguish five types of wavelets:

1 Orthogonal wavelets with FIR filters

These wavelets can be defined through the scaling filter w. Predefined 
families of such wavelets include Haar, Daubechies, Coiflets, and Symlets.

2 Biorthogonal wavelets with FIR filters

These wavelets can be defined through the two scaling filters wr and wd, for 
reconstruction and decomposition respectively. The BiorSplines wavelet 
family is a predefined family of this type.

3 Orthogonal wavelets without FIR filter, but with scale function

These wavelets can be defined through the definition of the wavelet function 
and the scaling function. The Meyer wavelet family is a predefined family of 
this type.

4 Wavelets without FIR filter and without scale function

These wavelets can be defined through the definition of the wavelet 
function. Predefined families of such wavelets include Morlet and 
Mexican_hat.

5 Complex wavelets without FIR filter and without scale function

These wavelets can be defined through the definition of the wavelet 
function. Predefined families of such wavelets include Complex Gaussian 
and Shannon.
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Define the Orders of Wavelets Within the Given 
Family
If a family contains many wavelets, the short name and the order are appended 
to form the wavelet name. Argument nums is a string containing the orders 
separated with blanks. This argument is not used for wavelet families that only 
have a single wavelet (Haar, Meyer, and Morlet for example).

For example, for the first Daubechies wavelets,

fsn = 'db'
nums = '1 2 3'

yield the three wavelets db1, db2, and db3.

For the first BiorSplines wavelets,

fsn = 'bior'
nums = '1.1 1.3 1.5 2.2'

yield the four wavelets bior1.1, bior1.3, bior1.5, and bior2.2. 

Build a MAT-File or M-File
The wavemngr command requires a file argument, which is a string containing 
a MAT-file or M-file name. 

If a family contains many wavelets, an M-file must be defined and must be of a 
specific form that depends on the wavelet type. The specific M-file formats are 
described in the remainder of this section.

If a family contains a single wavelet, then a MAT-file can be defined for 
wavelets of type 1. It must have the wavelet family short name (fsn) argument 
as its name and must contain a single variable whose name is fsn and whose 
value is the scaling filter. An M-file can also be defined as discussed below.

Type 1 (Orthogonal with FIR Filter)
The syntax of the first line in the M-file must be

function w = file(wname)

where the input argument wname is a string containing the wavelet name, and 
the output argument w is the corresponding scaling filter.

The filter w must be of even length; otherwise, it is zero-padded by the toolbox.
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For predefined wavelets, the scaling filter is of sum 1. For a new wavelet, the 
normalization is free (except 0 of course) since the toolbox uses a suitably 
normalized version of this filter.

Examples of such M-files for predefined wavelets are dbwavf.m for Daubechies, 
coifwavf.m for coiflets, and symwavf.m for symlets.

Type 2 (Biorthogonal with FIR Filter)
The syntax of the first line in the M-file must be

function [wr,wd] = file(wname)

where the input argument wname is a string containing the wavelet name and 
the output arguments wr and wd are the corresponding reconstruction and 
decomposition scaling filters, respectively.

The filters wr and wd must be of the same even length. In general, initial 
biorthogonal filters do not meet these requirements, so they are zero-padded by 
the toolbox. 

For predefined wavelets, the scaling filters are of sum 1. For a new wavelet, the 
normalization is free (except 0 of course) since the toolbox uses a suitably 
normalized version of these filters.

The M-file biorwavf.m (for BiorSplines) is an example of an M-file for a type 
2 predefined wavelet family.

Type 3 (Orthogonal with Scale Function)
The syntax of the first line in the M-file must be

function [phi,psi,t] = file(lb,ub,n,wname)

which returns values of the scaling function phi and of the wavelet function psi 
on t, a regular n-point grid of the interval [lb ub].

The argument wname is optional (see Note below).

The M-file meyer.m is an example of an M-file for a type 3 predefined wavelet 
family.
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Type 4 or Type 5 (No FIR Filter; No Scale Function)
The syntax of the first line in the M-file must be

function [psi,t] = file(lb,ub,n,wname)

or

function [psi,t] = file(lb,ub,n,wname, additional arguments )

which returns values of the wavelet function psi on t, a regular n-point grid of 
the interval [lb ub].

The argument wname is optional (see Note below).

Examples of type 4 M-files for predefined wavelet families are mexihat.m (for 
Mexican_hat) and morlet.m (for Morlet).

Examples of type 5 M-files for predefined wavelet families are shanwavf.m (for 
Shannon) and cmorwavf.m (for Complex Morlet).

Note  For the types 3, 4, and 5, the wname argument can be optional. It is only 
required if the new wavelet family contains more than one wavelet and if you 
plan to use this new family in the GUI mode. For the types 4 and 5, a complete 
example of using the “additional arguments” can be found looking at the 
reference page for the fbspwavf function.

Define the Effective Support
This definition is required only for wavelets of types 3, 4, and 5, since they are 
not compactly supported.

Defining the effective support means specifying an upper and lower bound. For 
example, for some predefined wavelet families, we have the following.

Family Lower Bound (lb) Upper Bound (ub)

Meyer –8 8

Mexican_hat –5 5

Morlet –4 4
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Adding a New Wavelet Family
To add a new wavelet, use the wavemngr command in one of two forms: 

wavemngr('add',fn,fsn,wt,nums,file) 

or 

wavemngr('add',fn,fsn,wt,nums,file,b).

Here are a few examples to illustrate how you would use wavemngr to add some 
of the predefined wavelet families:

Example 1
Let us take the example of Binlets proposed by Strang and Nguyen in pages 
216-217 of the book Wavelets and Filter Banks (see [StrN96] in “References” on 
page 6-152).

Note  The M-files used in this example can be found in the wavedemo 
directory.

The full family name is Binlets.

The short name of the wavelet family is binl.

The wavelet type is 2 (Biorthogonal with FIR filters).

Type Syntax

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4 
5','dbwavf'); 

1 wavemngr('add','Ndaubechies','ndb',1,'1 2 3 4 5 
**','dbwavf'); 

2 wavemngr('add','Nbiorwavf','nbio',2,'1.1 
1.3','biorwavf'); 

3 wavemngr('add','Nmeyer','nmey',3,'','meyer',[-8,8]); 

4 wavemngr('add','Nmorlet','nmor',4,'','morlet',[-4,4]). 
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The order of the wavelet within the family is 7.9 (we just use one in this 
example).

The M-file used to generate the filters is binlwavf.m

Then to add the new wavelet, type

% Add new family of biorthogonal wavelets. 
     wavemngr('add','Binlets','binl',2,'7.9','binlwavf')

% List wavelets families.
     wavemngr('read')

ans =

=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
Binlets binl 
===================================
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If you want to get online information on this new family, you can build an 
associated help file which would look like the following:

function binlinfo
%BINLINFO Information on biorthogonal wavelets (binlets).
%
% Biorthogonal Wavelets (Binlets)
%
% Family                  Binlets
% Short name              binl
% Order Nr,Nd             Nr = 7 , Nd = 9
%
% Orthogonal              no
%   Biorthogonal            yes
%   Compact support         yes
%   DWT                     possible
%   CWT                     possible
%
%   binl Nr.Nd              ld                      lr      
%                      effective length        effective length
%                        of LoF_D                of HiF_D
%   binl 7.9                 7                       9

The associated M-file to generate the filters (binlwavf.m) is

function [Rf,Df] = binlwavf(wname)
%BINLWAVF Biorthogonal wavelet filters (Binlets).
%   [RF,DF] = BINLWAVF(W) returns two scaling filters
%   associated with the biorthogonal wavelet specified
%   by the string W.
%   W = 'binlNr.Nd' where possible values for Nr and Nd are:
               Nr = 7  Nd = 9
%   The output arguments are filters:
%           RF is the reconstruction filter
%           DF is the decomposition filter

% Check arguments.
if errargn('binlwavf',nargin,[0 1],nargout,[0:2]), error('*'); 
end

% suppress the following line for extension
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Nr = 7; Nd = 9;

% for possible extension
% more wavelets in 'Binlets' family
%----------------------------------
if nargin==0
    Nr = 7; Nd = 9;
elseif  isempty(wname)
    Nr = 7; Nd = 9;
else
    if ischar(wname)
        lw = length(wname);
        ab = abs(wname);
        ind = find(ab==46 | 47<ab | ab<58);
        li = length(ind);
        err = 0;
        if      li==0
            err = 1;
        elseif  ind(1)~=ind(li)-li+1
            err = 1;
        end 
        if err==0 , 
            wname = str2num(wname(ind));
            if isempty(wname) , err = 1; end
        end
    end     
    if err==0
        Nr = fix(wname); Nd = 10*(wname-Nr);
    else
        Nr = 0; Nd = 0;
    end
end

% suppress the following lines for extension
% and add a test for errors.
%-------------------------------------------
if Nr~=7 , Nr = 7; end
if Nd~=9 , Nd = 9; end

if Nr == 7
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   if Nd == 9
      Rf = [-1 0 9 16 9 0 -1]/32;
      Df = [ 1 0 -8 16 46 16 -8 0 1]/64;
   end
end

Example 2
In the following example, new compactly supported orthogonal wavelets are 
added to the toolbox. These wavelets, which are a slight generalization of the 
Daubechies wavelets, are based on the use of Bernstein polynomials and are 
due to Kateb and Lemarié in an unpublished work.

Note  The M-files used in this example can be found in the wavedemo 
directory.

% List initial wavelets families. 
wavemngr('read')

ans =
=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
===================================
% List all wavelets. 
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wavemngr('read',1)

ans =

===================================         
Haar haar                    
===================================         
Daubechies db                      
------------------------------              
db1 db2 db3 db4
db5 db6 db7 db8
db9 db10 db** 
===================================         
Symlets sym                     
------------------------------              
sym2 sym3 sym4 sym5 
sym6 sym7 sym8 sym** 
===================================         
Coiflets coif                    
------------------------------              
coif1 coif2 coif3 coif4
coif5 
===================================         
BiorSplines bior                    
------------------------------              
bior1.1 bior1.3 bior1.5 bior2.2 
bior2.4 bior2.6 bior2.8 bior3.1 
bior3.3 bior3.5 bior3.7 bior3.9 
bior4.4 bior5.5 bior6.8 
===================================         
ReverseBior rbio                    
------------------------------              
rbio1.1 rbio1.3 rbio1.5 rbio2.2 
rbio2.4 rbio2.6 rbio2.8 rbio3.1 
rbio3.3 rbio3.5 rbio3.7 rbio3.9 
rbio4.4 rbio5.5 rbio6.8 
===================================         
Meyer meyr                    
===================================         
DMeyer dmey                    
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===================================         
Gaussian gaus                    
------------------------------              
gaus1 gaus2 gaus3 gaus4 
gaus5 gaus6 gaus7 gaus8 
gaus** 
===================================         
Mexican_hat mexh                    
===================================         
Morlet morl                    
===================================         
Complex Gaussian cgau                    
------------------------------              
cgau1 cgau2 cgau3 cgau4 
cgau5 cgau** 
===================================         
Shannon shan                    
------------------------------              
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1 
shan2-3 shan** 
===================================         
Frequency B-Spline fbsp                    
------------------------------              
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**             
===================================         
Complex Morlet cmor                    
------------------------------              
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1
cmor1-0.5 cmor1-0.1 cmor** 
=================================== 

% Add new family of orthogonal wavelets. 
% You must define: 
% 
% Family Name: Lemarie 
% Family Short Name: lem 
% Type of wavelet: 1 (orth) 
% Wavelets numbers: 1 2 3 4 5 
% File driver: lemwavf 
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% 
% The function lemwavf.m must be as follow: 
% function w = lemwavf(wname) 
% where the input argument wname is a string: 
% wname = 'lem1' or 'lem2' ... i.e., 
% wname = sh.name + number 
% and w the corresponding scaling filter. 
% The addition is obtained using:
wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf'); 

% The ascii file 'wavelets.asc' is saved as 
% 'wavelets.prv', then it is modified and 
% the MAT file 'wavelets.inf' is generated.

% List wavelets families.
wavemngr('read')

ans =
=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
Lemarie lem 
===================================
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After Adding a New Wavelet Family
When you use the wavemngr command to add a new wavelet, the toolbox creates 
three wavelet extension files in the current directory: the two ASCII files 
wavelets.asc and wavelets.prv, and the MAT-file wavelets.inf.

If you want to use your own extended wavelet families with the Wavelet 
Toolbox™ software, you should

1 Create a new directory specifically to hold the wavelet extension files.

2 Move the previously mentioned files into this new directory.

3 Prepend this directory to the MATLAB® directory search path (see the 
reference entry for the path command).

4 Use this same directory for subsequent modifications. Allowing many 
wavelet extension files to proliferate in different directories may lead to 
unpredictable results.

5 Define an M-file called <fsn>info.m (for example, see dbinfo.m or 
morlinfo.m).

This file will be associated automatically with the Wavelet Family button 
in the Wavelet Display option of the graphical tools.
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Function Reference

“General Wavelet Functions” on page 8-2 Basic wavelet functions

“Wavelet Families” on page 8-3 Wavelet families

“1-D Continuous Wavelets” on page 8-4 1-D continuous wavelets

“1-D Discrete Wavelets” on page 8-5 1-D discrete wavelets

“2-D Discrete Wavelets” on page 8-6 2-D discrete wavelets

“Wavelet Packet Algorithms” on page 8-7 Wavelet packets

“Discrete Stationary Wavelet Transform 
Algorithms” on page 8-8

Discrete, stationary wavelet transforms

“Lifting Wavelet Transforms” on page 8-9 Lifting transforms

“De-Noising and Compression” on page 8-10 De-noising and compression

“1-D Multisignal Wavelet Analysis” on page 8-11 1-D multisignal discrete wavelets

“Other Wavelet Applications” on page 8-12 Brownian motion and image fusion

“Tree Management Utilities” on page 8-13 Functions for managing wavelet trees

“General Utilities and Demos” on page 8-15 Other utilities, demos, and graphical user 
interfaces
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General Wavelet Functions

biorfilt Biorthogonal wavelet filter set

centfrq Wavelet center frequency

dyaddown Dyadic downsampling

dyadup Dyadic upsampling

intwave Integrate wavelet function psi (ψ)

orthfilt Orthogonal wavelet filter set

qmf Quadrature mirror filter

scal2frq Scale to frequency

wavefun Wavelet and scaling functions

wavefun2 Wavelet and scaling functions 2-D

wavemngr Wavelet manager 

wfilters Wavelet filters

wmaxlev Maximum wavelet decomposition level
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Wavelet Families

biorwavf Biorthogonal spline wavelet filters

cgauwavf Complex Gaussian wavelet

cmorwavf Complex Morlet wavelet

coifwavf Coiflet wavelet filter

dbaux Daubechies wavelet filter computation

dbwavf Daubechies wavelet filter

fbspwavf Complex frequency B-spline wavelet

gauswavf Gaussian wavelet

mexihat Mexican hat wavelet

meyer Meyer wavelet

meyeraux Meyer wavelet auxiliary function

morlet Morlet wavelet

rbiowavf Reverse biorthogonal spline wavelet filters

shanwavf Complex Shannon wavelet

symaux Symlet wavelet filter computation

symwavf Symlet wavelet filter
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1-D Continuous Wavelets

cwt Real or complex continuous 1-D wavelet coefficients

cwtext Real or complex continuous 1-D wavelet coefficients using extension parameter

pat2cwav Build wavelet from pattern

wscalogram Scalogram for continuous wavelet transform



1-D Discrete Wavelets

8-5

1-D Discrete Wavelets

appcoef 1-D approximation coefficients

detcoef 1-D detail coefficients

dwt Single-level discrete 1-D wavelet transform

dwtmode Discrete wavelet transform extension mode

idwt Single-level inverse discrete 1-D wavelet transform

upcoef Direct reconstruction from 1-D wavelet coefficients

upwlev Single-level reconstruction of 1-D wavelet decomposition

wavedec Multilevel 1-D wavelet decomposition

waverec Multilevel 1-D wavelet reconstruction

wenergy Energy for1-D wavelet decomposition

wrcoef Reconstruct single branch from 1-D wavelet coefficients
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2-D Discrete Wavelets

appcoef2 2-D approximation coefficients

detcoef2 2-D detail coefficients

dwt2 Single-level discrete 2-D wavelet transform

dwtmode Discrete wavelet transform extension mode

idwt2 Single-level inverse discrete 2-D wavelet transform

upcoef2 Direct reconstruction from 2-D wavelet coefficients

upwlev2 Single-level reconstruction of 2-D wavelet decomposition

wavedec2 Multilevel 2-D wavelet decomposition

waverec2 Multilevel 2-D wavelet reconstruction

wenergy2 Energy for 2-D wavelet decomposition

wrcoef2 Reconstruct single branch from 2-D wavelet coefficients
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Wavelet Packet Algorithms

bestlevt Best level tree wavelet packet analysis

besttree Best tree wavelet packet analysis

entrupd Entropy update (wavelet packet)

wenergy Energy for wavelet packet decomposition

wentropy Entropy (wavelet packet)

wp2wtree Extract wavelet tree from wavelet packet tree

wpcoef Wavelet packet coefficients

wpcutree Cut wavelet packet tree

wpdec Wavelet packet decomposition 1-D

wpdec2 Wavelet packet decomposition 2-D

wpfun Wavelet packet functions

wpjoin Recompose wavelet packet

wprcoef Reconstruct wavelet packet coefficients

wprec Wavelet packet reconstruction 1-D

wprec2 Wavelet packet reconstruction 2-D

wpsplt Split (decompose) wavelet packet
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Discrete Stationary Wavelet Transform Algorithms

iswt Inverse discrete stationary wavelet transform 1-D

iswt2 Inverse discrete stationary wavelet transform 2-D

swt Discrete stationary wavelet transform 1-D

swt2 Discrete stationary wavelet transform 2-D
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Lifting Wavelet Transforms

addlift Add lifting steps to lifting scheme

bswfun Biorthogonal scaling and wavelet functions

displs Display lifting scheme

filt2ls Transform quadruplet of filters to lifting scheme

ilwt Inverse 1-D lifting wavelet transform

ilwt2 Inverse 2-D lifting wavelet transform

liftfilt Apply elementary lifting steps on quadruplet of filters

liftwave Lifting schemes

laurmat Laurent matrices constructor

laurpoly Laurent polynomials constructor

ls2filt Transform lifting scheme to quadruplet of filters

lsinfo Lifting schemes information

lwt 1-D lifting wavelet transform

lwt2 2-D lifting wavelet transform

lwtcoef Extract or reconstruct 1-D LWT wavelet coefficients

lwtcoef2 Extract or reconstruct 2-D LWT wavelet coefficients

wave2lp Laurent polynomials associated with wavelet

wavenames Wavelet names for LWT
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De-Noising and Compression

ddencmp Default values for de-noising or compression

thselect Threshold selection for de-noising

wbmpen Penalized threshold for wavelet 1-D or 2-D de-noising

wdcbm Thresholds for wavelet 1-D using Birge-Massart strategy

wdcbm2 Thresholds for wavelet 2-D using Birge-Massart strategy

wden Automatic 1-D de-noising

wdencmp De-noising or compression

wnoise Noisy wavelet test data

wnoisest Estimate noise of 1-D wavelet coefficients

wpbmpen Penalized threshold for wavelet packet de-noising

wpdencmp De-noising or compression using wavelet packets

wpthcoef Wavelet packet coefficients thresholding

wthcoef Wavelet coefficient thresholding 1-D

wthcoef2 Wavelet coefficient thresholding 2-D

wthresh Soft or hard thresholding

wthrmngr Threshold settings manager
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1-D Multisignal Wavelet Analysis

wmspca Multiscale Principal Components Analysis

wmulden Wavelet multivariate de-noising

chgwdeccfs Change multisignal 1-D decomposition coefficients

mdwtcluster Multisignal 1-D clustering

mdwtdec Multisignal 1-D wavelet decomposition

mdwtrec Multisignal 1-D wavelet reconstruction

mswcmp Multisignal 1-D compression using wavelets

mswcmpscr Multisignal 1-D wavelet compression scores

mswcmptp Multisignal 1-D compression thresholds and performances

mswden Multisignal 1-D denoising using wavelets

mswthresh Perform multisignal 1-D thresholding

wdcenergy Multisignal 1-D decomposition energy distribution
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Other Wavelet Applications

wfbm Fractional Brownian motion synthesis

wfbmesti Parameter estimation of fractional Brownian motion

wfusimg Fusion of two images

wfusmat Fusion of two matrices or arrays
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Tree Management Utilities

allnodes Tree nodes

cfs2wpt Wavelet packet tree construction from coefficients

depo2ind Node depth-position to node index

disp WPTREE information

drawtree Draw wavelet packet decomposition tree (GUI)

dtree DTREE constructor

get WPTREE contents

ind2depo Node index to node depth-position

isnode Existing node test

istnode Terminal nodes indices test

leaves Determine terminal nodes

nodeasc Node ascendants

nodedesc Node descendants

nodejoin Recompose node

nodepar Node parent

nodesplt Split (decompose) node

noleaves Determine nonterminal nodes

ntnode Number of terminal nodes

ntree NTREE constructor

plot Plot tree object

read Read values of WPTREE

readtree Read wavelet packet decomposition tree from figure

set WPTREE field contents

tnodes Determine terminal nodes

treedpth Tree depth
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treeord Tree order

wptree Constructor for the class WPTREE

wpviewcf Plot wavelet packets colored coefficients

write Write values in WPTREE fields

wtbo WTBO constructor

wtreemgr NTREE manager
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General Utilities and Demos

wcodemat Extended pseudocolor matrix scaling

localmax Compute local maxima positions

wextend Extend vector or matrix

wkeep Keep part of vector or matrix

wrev Flip vector

wtbxmngr The Wavelet Toolbox™ manager

wavemenu Wavelet GUI tools

wvarchg Find variance change points

waveinfo Wavelet information

waveletfamilies Wavelet families and family members

wavedemo Wavelet Toolbox demos
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Functions — Alphabetical List 8

This section contains function reference pages listed alphabetically.
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8addliftPurpose Add lifting steps to lifting scheme

Syntax LSN = addlift(LS,ELS)
LSN = addlift(LS,ELS,'begin')
LSN = addlift(LS,ELS,'end')

Description LSN = addlift(LS,ELS) returns the new lifting scheme LSN obtained by 
appending the elementary lifting step ELS to the lifting scheme LS.

LSN = addlift(LS,ELS,'begin') prepends the specified elementary lifting 
step. 

ELS is either a cell array (see lsinfo)  

{TYPEVAL, COEFS, MAX_DEG}  

or a structure (see liftfilt) 

struct('type',TYPEVAL,'value',LPVAL) 

with 

LPVAL = laurpoly(COEFS, MAX_DEG)

LSN = addlift(LS,ELS,'end') is equivalent to addfilt(LS,ELS).

If ELS is a sequence of elementary lifting steps, stored in a cell array or an array 
of structures, then each of the elementary lifting steps is added to LS.

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...                        
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};                                   



addlift

8-20

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...                                     
'd'             [ -1.00000000]              [0]  
'p'             [  0.50000000]              [0]  
'p'             [ -0.12500000  0.12500000]  [0]  
[  1.41421356]  [  0.70710678]              []   
};                                               

See Also liftfilt
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8allnodesPurpose Tree nodes

Syntax N = allnodes(T)
N = allnodes(T,'deppos')

Description allnodes is a tree management utility that returns one of two node 
descriptions: either indices, or depths and positions. 

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

N = allnodes(T) returns the indices of all the nodes of the tree T in column 
vector N.

N = allnodes(T,'deppos') returns the depths and positions of all the nodes 
in matrix N. 

N(i,1) is the depth and N(i,2) the position of the node i.

Examples % Create initial tree. 
ord = 2;
t = ntree(ord,3); % Binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% List t nodes (index).
aln_ind = allnodes(t)
aln_ind =

0 
1 
2 
3 
4 
5 
6 
7 
8 
13 
14

% List t nodes (Depth_Position). 
aln_depo = allnodes(t,'deppos')
aln_depo =

0 0
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 6
3 7

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)



appcoef

8-23

8appcoefPurpose 1-D approximation coefficients

Syntax A = appcoef(C,L,'wname',N)
A = appcoef(C,L,'wname')
A = appcoef(C,L,Lo_R,Hi_R)
A = appcoef(C,L,Lo_R,Hi_R,N)

Description appcoef is a one-dimensional wavelet analysis function.

appcoef computes the approximation coefficients of a one-dimensional signal. 

A = appcoef(C,L,'wname',N) computes the approximation coefficients at level 
N using the wavelet decomposition structure [C,L] (see wavedec for more 
information).

'wname' is a string containing the wavelet name. Level N must be an integer 
such that 0 ≤ N ≤ length(L)-2.

A = appcoef(C,L,'wname') extracts the approximation coefficients at the last 
level: length(L)-2. 

Instead of giving the wavelet name, you can give the filters. 

For A = appcoef(C,L,Lo_R,Hi_R) or A = appcoef(C,L,Lo_R,Hi_R,N), Lo_R is 
the reconstruction low-pass filter and Hi_R is the reconstruction high-pass 
filter (see wfilters for more information).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load a one-dimensional signal. 
load leleccum; s = leleccum(1:3920); 

% Perform decomposition at level 3 of s using db1. 
[c,l] = wavedec(s,3,'db1');

% Extract approximation coefficients at level 3, from the 
% wavelet decomposition structure [c,l]. 
ca3 = appcoef(c,l,'db1',3);
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% Using some plotting commands,
% the following figure is generated.

Algorithm The input vectors C and L contain all the information about the signal 
decomposition.

Let NMAX = length(L)-2; then C = [A(NMAX) D(NMAX) ... D(1)] where A and 
the D are vectors.

If N = NMAX, then a simple extraction is done; otherwise, appcoef computes 
iteratively the approximation coefficients using the inverse wavelet transform. 

See Also detcoef, wavedec
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8appcoef2Purpose 2-D approximation coefficients

Syntax A = appcoef2(C,S,'wname',N)
A = appcoef2(C,S,'wname')
A = appcoef2(C,S,Lo_R,Hi_R)
A = appcoef2(C,S,Lo_R,Hi_R,N) 

Description appcoef2 is a two-dimensional wavelet analysis function.  It computes the 
approximation coefficients of a two-dimensional signal. The syntaxes allow you 
to give the wavelet name or the filters as inputs.

A = appcoef2(C,S,'wname',N) computes the approximation coefficients at 
level N using the wavelet decomposition structure [C,S] (see wavedec2 for more 
information).

'wname' is a string containing the wavelet name. Level N must be an integer 
such that 0 ≤ N ≤ size(S,1)-2. 

A = appcoef2(C,S,'wname') extracts the approximation coefficients at the last 
level: size(S,1)-2. 

A = appcoef2(C,S,Lo_R,Hi_R) or A = appcoef2(C,S,Lo_R,Hi_R,N), Lo_R is 
the reconstruction low-pass filter and Hi_R is the reconstruction high-pass 
filter (see wfilters for more information).

Remarks If  C and S are obtained from an indexed image analysis  or a truecolor image 
analysis, A is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 

% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db1. 
[c,s] = wavedec2(X,2,'db1'); 
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sizex = size(X)
sizex =

256 256

sizec = size(c)

sizec =
 1 65536
val_s = s 

val_s =
64 64
64 64
128 128
256 256

% Extract approximation coefficients 
% at level 2. 
ca2 = appcoef2(c,s,'db1',2); 
sizeca2 = size(ca2)

sizeca2 =
64 64

% Compute approximation coefficients 
% at level 1. 
ca1 = appcoef2(c,s,'db1',1); 
sizeca1 = size(ca1)

sizeca1 =
128 128

Algorithm The algorithm is built on the same principle as appcoef.

See Also detcoef2, wavedec2
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8bestlevtPurpose Best level tree wavelet packet analysis

Syntax T = bestlevt(T)
[T,E] = bestlevt(T)

Description bestlevt is a one- or two-dimensional wavelet packet analysis function.

bestlevt computes the optimal complete subtree of an initial tree with respect 
to an entropy type criterion. The resulting complete tree may be of smaller 
depth than the initial one.

T = bestlevt(T) computes the modified wavelet packet tree T corresponding 
to the best level tree decomposition. 

[T,E] = bestlevt(T) computes the best level tree T, and in addition, the best 
entropy value E. 

The optimal entropy of the node, whose index is j-1, is E(j).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; 
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon). 
wpt = wpdec(x,3,'db1'); 

% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);



bestlevt

8-28

% Plot wavelet packet tree wpt. 
plot(wpt)

 

% Compute best level tree. 
blt = bestlevt(wpt);

% Plot best level tree blt. 
plot(blt)

 

Algorithm See besttree algorithm section. The only difference is that the optimal tree is 
searched among the complete subtrees of the initial tree, instead of among all 
the binary subtrees. 

See Also besttree, wenergy, wpdec, wpdec2

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,0) (4,1)

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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8besttreePurpose Best tree wavelet packet analysis

Syntax T = besttree(T)
[T,E] = besttree(T)
[T,E,N] = besttree(T)

Description besttree is a one- or two-dimensional wavelet packet analysis function that 
computes the optimal subtree of an initial tree with respect to an entropy type 
criterion. The resulting tree may be much smaller than the initial one.

Following the organization of the wavelet packets library, it is natural to count 
the decompositions issued from a given orthogonal wavelet. 

A signal of length N = 2L can be expanded in α different ways, where α is the 
number of binary subtrees of a complete binary tree of depth L.

As a result, we can conclude that (for more information, see the 
Mallat’s book given in References at page 323).

This number may be very large, and since explicit enumeration is generally 
intractable, it is interesting to find an optimal decomposition with respect to a 
convenient criterion, computable by an efficient algorithm. We are looking for 
a minimum of the criterion.

T = besttree(T) computes the best tree T corresponding to the best entropy 
value. 

[T,E] = besttree(T) computes the best tree T and, in addition, the best 
entropy value E.

The optimal entropy of the node, whose index is j-1, is E(j).

[T,E,N] = besttree(T) computes the best tree T, the best entropy value E 
and, in addition, the vector N containing the indices of the merged nodes.

α 2
N 2⁄≥
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Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal.
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet, using default
% entropy (shannon). 
wpt = wpdec(x,3,'db1');
 
% Decompose the packet [3 0].
wpt = wpsplt(wpt,[3 0]);

% Plot wavelet packet tree wpt. 
plot(wpt)

% Compute best tree.
bt = besttree(wpt);

% Plot best tree bt. 
plot(bt)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(4,0) (4,1)

(0,0)
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Algorithm Consider the one-dimensional case. Starting with the root node, the best tree 
is calculated using the following scheme. A node N is split into two nodes N1 
and N2 if and only if the sum of the entropy of N1 and N2 is lower than the 
entropy of N. This is a local criterion based only on the information available 
at the node N.

Several entropy type criteria can be used (see wenergy for more information). 
If the entropy function is an additive function along the wavelet packet 
coefficients, this algorithm leads to the best tree.

Starting from an initial tree T and using the merging side of this algorithm, we 
obtain the best tree among all the binary subtrees of T.

See Also bestlevt, wenergy, wpdec, wpdec2

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

 Mallat, S. (1998), A wavelet tour of signal processing, Academic Press.

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1) (3,2) (3,3)

(4,0) (4,1)

(0,0)
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8biorfiltPurpose Biorthogonal wavelet filter set

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF)
[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2] = 

biorfilt(DF,RF,'8')

Description The biorfilt command returns either four or eight filters associated with 
biorthogonal wavelets.

[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(DF,RF) computes four filters associated 
with the biorthogonal wavelet specified by decomposition filter DF and 
reconstruction filter RF. These filters are

[Lo_D1,Hi_D1,Lo_R1,Hi_R1,Lo_D2,Hi_D2,Lo_R2,Hi_R2] = 
biorfilt(DF,RF,'8') returns eight filters, the first four associated with the 
decomposition wavelet, and the last four associated with the reconstruction 
wavelet. 

It is well known in the subband filtering community that if the same FIR filters 
are used for reconstruction and decomposition, then symmetry and exact 
reconstruction are incompatible (except with the Haar wavelet). Therefore, 
with biorthogonal filters, two wavelets are introduced instead of just one:

One wavelet, , is used in the analysis, and the coefficients of a signal s are

 

The other wavelet, ψ, is used in the synthesis:

 

Lo_D Decomposition low-pass filter

Hi_D Decomposition high-pass filter

Lo_R Reconstruction low-pass filter

Hi_R Reconstruction high-pass filter

ψ̃

c̃j k, s x( )ψ̃j k, x( ) xd∫=

s c̃j k, ψj k,
j k,
∑=
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Furthermore, the two wavelets are related by duality in the following sense: 

 as soon as  or  and

 as soon as .

It becomes apparent, as A. Cohen pointed out in his thesis (p. 110), that “the 
useful properties for analysis (e.g., oscillations, null moments) can be 
concentrated in the  function; whereas, the interesting properties for 
synthesis (regularity) are assigned to the ψ function. The separation of these 
two tasks proves very useful.”

 and ψ can have very different regularity properties, ψ being more regular 
than .

The , ψ,  and φ functions are zero outside a segment.

Examples % Compute the four filters associated with spline biorthogonal 
% wavelet 3.5: bior3.5.

% Find the two scaling filters associated with bior3.5. 
[Rf,Df] = biorwavf('bior3.5');
 
% Compute the four filters needed. 
[Lo_D,Hi_D,Lo_R,Hi_R] = biorfilt(Df,Rf); 
subplot(221); stem(Lo_D); 
title('Dec. low-pass filter bior3.5'); 
subplot(222); stem(Hi_D); 
title('Dec. high-pass filter bior3.5'); 
subplot(223); stem(Lo_R); 
title('Rec. low-pass filter bior3.5'); 
subplot(224); stem(Hi_R); 
title('Rec. high-pass filter bior3.5');

ψ̃j k, x( )ψj ′ k ′, x( ) xd∫ 0= j j′≠ k k′≠

φ̃0 k, x( )φ0 k ′, x( ) xd∫ 0= k k ′≠

ψ̃

ψ̃
ψ̃

ψ̃ φ̃
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% Editing some graphical properties,
% the following figure is generated.

% Orthogonality by dyadic translation is lost.
nzer = [Lo_D 0 0]*[0 0 Lo_D]'
nzer =

-0.6881
nzer = [Hi_D 0 0]*[0 0 Hi_D]'
nzer =

0.1875

% But using duality we have: 
zer = [Lo_D 0 0]*[0 0 Lo_R]'
zer =

-2.7756e-17 
zer = [Hi_D 0 0]*[0 0 Hi_R]'
zer =

2.7756e-17

% But, perfect reconstruction via DWT is preserved.
x = randn(1,500); 
[a,d] = dwt(x,Lo_D,Hi_D); 
xrec = idwt(a,d,Lo_R,Hi_R); 
err = norm(x-xrec)

0 5 10 15
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0

0.5

1
Dec. low−pass filter bior3.5

0 5 10 15
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−0.5
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−0.5

0

0.5

1
Rec. high−pass filter bior3.5
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err =
5.0218e-15

% High and low frequency illustration. 
fftld = fft(Lo_D); ffthd = fft(Hi_D); 
freq = [1:length(Lo_D)]/length(Lo_D); 
subplot(221); plot(freq,abs(fftld),freq,abs(ffthd)); 
title('Transfer modulus for dec. filters') 
fftlr = fft(Lo_R); ffthr = fft(Hi_R); 
freq = [1:length(Lo_R)]/length(Lo_R); 
subplot(222); plot(freq,abs(fftlr),freq,abs(ffthr)); 
title('Transfer modulus for rec. filters') 
subplot(223); plot(freq, abs(fftlr.*fftld + ffthd.*ffthr)); 
title('One biorthogonality condition') 
xlabel('|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2')

% Editing some graphical properties,
% the following figure is generated.
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|fft(Lo_R)fft(Lo_D) + fft(Hi_R)fft(Hi_D)| = 2
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Note  For biorthogonal wavelets, the filters for decomposition and 
reconstruction are generally of different odd lengths. This situation occurs, for 
example, for “splines” biorthogonal wavelets used in the toolbox where the 
four filters are zero-padded to have the same even length.

See Also biorwavf, orthfilt

References Cohen, A. (1992), “Ondelettes, analyses multirésolution et traitement 
numérique du signal,” Ph. D. Thesis, University of Paris IX, DAUPHINE.

Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed. 
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8biorwavfPurpose Biorthogonal spline wavelet filters

Syntax [RF,DF] = biorwavf(W)

Description [RF,DF] = biorwavf(W) returns two scaling filters associated with the 
biorthogonal wavelet specified by the string W. 

W = 'biorNr.Nd' where possible values for Nr and Nd are

The output arguments are filters.

• RF is the reconstruction filter.

• DF is the decomposition filter.

Examples % Set spline biorthogonal wavelet name. 
wname = 'bior2.2'; 

% Compute the two corresponding scaling filters.
% rf is the reconstruction scaling filter.
% df is the decomposition scaling filter. 
[rf,rd] = biorwavf(wname)

rf =
0.2500 0.5000 0.2500

df =
-0.1250 0.2500 0.7500 0.2500 -0.1250

See Also biorfilt, waveinfo

Nr = 1 Nd = 1 , 3 or 5 

Nr = 2 Nd = 2 , 4 , 6 or 8

Nr = 3 Nd = 1 , 3 , 5 , 7 or 9

Nr = 4 Nd = 4 

Nr = 5 Nd = 5 

Nr = 6 Nd = 8
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8bswfunPurpose Biorthogonal scaling and wavelet functions

Syntax [PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR)
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR,ITER)
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR,'plot')
[PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR,ITER,'plot')

Description [PHIS,PSIS,PHIA,PSIA,XVAL] = bswfun(LoD,HiD,LoR,HiR) returns 
approximations on the grid XVAL of the two pairs of scaling function and 
wavelet (PHIA,PSIA), (PHIS,PSIS) associated with the two pairs of filters 
(LoD,HiD), (LoR,HiR).

bswfun(LoD,HiD,LoR,HiR,ITER) computes the two pairs of scaling and 
wavelet functions using ITER iterations.

bswfun(LoD,HiD,LoR,HiR,'plot') or bswfun(LoD,HiD,LoR,HiR,ITER,'plot') 
or bswfun(LoD,HiD,LoR,HiR,'plot',ITER) computes and plots the functions.

Examples % Start from the Cohen-Daubechies-Feauveau wavelet 
% and get the corresponding lifting scheme.
lscdf = liftwave('cdf3.1');

% Visualize the obtained lifting scheme.
displs(lscdf);

lscdf = {...                                         
'p'             [ -0.33333333]              [-1]  
'd'             [ -0.37500000 -1.12500000]  [1]   
'p'             [  0.44444444]              [0]   
[  2.12132034]  [  0.47140452]              []    
};                                                

% Transform the lifting scheme to biorthogonal
% filters quadruplet.
[LoD,HiD,LoR,HiR] = ls2filt(lscdf);

% Visualize the two pairs of scaling and wavelet
% functions.
bswfun(LoD,HiD,LoR,HiR,'plot');
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Algorithm This function uses the cascade algorithm.

See Also wavefun 
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8centfrqPurpose Wavelet center frequency

Syntax FREQ = centfrq('wname')
FREQ = centfrq('wname',ITER)
[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot')

Description FREQ = centfrq('wname') returns the center frequency in herz of the wavelet 
function, 'wname' (see wavefun for more information).

For FREQ = centfrq('wname',ITER), ITER is the number of iterations 
performed by the function wavefun, which is used to compute the wavelet.

[FREQ,XVAL,RECFREQ] = centfrq('wname',ITER,'plot') returns, in 
addition, the associated center frequency based approximation RECFREQ on the 
2ITER points grid XVAL and plots the wavelet function and RECFREQ.

Examples % Example 1: a real wavelet 
wname = 'db2';

% Compute the center frequency and display
% the wavelet function and the associated 
% center frequency based approximation.
iter = 8;
cfreq = centfrq(wname,8,'plot')

cfreq =
    0.6667
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% Example 2: a complex wavelet 
wname = 'cgau6';

% Compute the center frequency and display 
% the wavelet function and the associated 
% center frequency based approximation.
cfreq = centfrq(wname,8,'plot')

cfreq =

    0.6000
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See Also scal2frq, wavefun
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8cfs2wptPurpose Wavelet packet tree construction from coefficients

Syntax T = cfs2wpt(WNAME,SIZE_OF_DATA,TN_OF_TREE,ORDER,CFS)

Description CFS2WPT builds a wavelet packet tree (T) and the related analyzed signal or 
image (X) using the following input information:

WNAME: name of the wavelet used for the analysis

SIZE_OF_DATA: size of the analyzed signal or image

TN_OF_TREE: vector containing the terminal node indices of the tree

ORDER: 2 for a signal or 4 for an image

CFS: coefficients used to reconstruct the original signal or image. CFS is 
optional. When CFS2WPT is used without the CFS input parameter, the wavelet 
packet tree structure (T) is generated, but all the tree coefficients are null 
(including X). 

Examples % Example 1: Using cfs2wpt with the CFS argument

% Loading an image
load detail

% Building the wavelet packet tree decomposition
t = wpdec2(X,2,'sym4');

% Reading the coefficient values from the tree
cfs = read(t,'allcfs');

% Adding noise to the coefficients
noisyCfs = cfs + 40*rand(size(cfs));

% Building the wavelet packet tree object and the reconstructed
% noisy image from the noisyCfs using cfs2wpt
noisyT = cfs2wpt('sym4',size(X),tnodes(t),4,noisyCfs);

% Plotting the new tree and clicking the node (0) or (0,0)
plot(noisyT)
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% Example 2: Using cfs2wpt without the CFS argument

% Building an empty wavelet packet tree object 
t = cfs2wpt('sym4',[1 1024],[3 9 10 2]',2);

% Getting the terminal node sizes
sN = read(t,'sizes',[3,9]);
sN3 = sN(1,:); sN9 = sN(2,:);

% Building coefficient values vectors and writing them in the tree
cfsN3 = ones(sN3);
cfsN9 = randn(sN9);
t = write(t,'cfs',3,cfsN3,'cfs',9,cfsN9);

% Plotting the updated tree and clicking the node (9) or (3,2)
plot(t)
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8cgauwavfPurpose Complex Gaussian wavelet

Syntax [PSI,X] = cgauwavf(LB,UB,N,P)

Description [PSI,X] = cgauwavf(LB,UB,N,P) returns values of the P-th derivative of the 
complex Gaussian function on an N point regular grid for the interval [LB,UB]. 
Cp is such that the 2-norm of the P-th derivative of F is equal to 1.

For P > 8,  Symbolic Math Toolbox™ software is required.

Output arguments are the wavelet function PSI computed on the grid X.

[PSI,X] = cgauwavf(LB,UB,N) is equivalent to 
[PSI,X] = cgauwavf(LB,UB,N,1)

These wavelets have an effective support of [-5 5].

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute complex Gaussian wavelet of order 4.
[psi,x] = cgauwavf(lb,ub,n,4);

% Plot complex Gaussian wavelet of order 4.
subplot(211)
plot(x,real(psi)),
title('Complex Gaussian wavelet of order 4')
xlabel('Real part'), grid
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 subplot(212)
 plot(x,imag(psi))
 xlabel('Imaginary part'), grid

See Also waveinfo
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8chgwdeccfsPurpose Change multisignal 1-D decomposition coefficients

Syntax DEC = chgwdeccfs(DEC,'ca',COEFS)
DEC = chgwdeccfs(DEC,'cd',COEFS,LEV)
DEC = chgwdeccfs(DEC,'all',CA,CD)
DEC = chgwdeccfs(DEC,'all',V)
DEC = chgwdeccfs(...,IDXSIG)

Description DEC = chgwdeccfs(DEC,'ca',COEFS) replaces the approximation coefficients 
at level DEC.level with those contained in the matrix COEFS. If COEFS is a 
single value V, all coefficients are replaced by V.

DEC = chgwdeccfs(DEC,'cd',COEFS,LEV) replaces the detail coefficients at 
level LEV with those contained in the matrix COEFS. If COEFS is a single value V, 
then LEV can be a vector of levels and all the coefficients that belong to these 
levels are replaced by V. LEV must be such that  1 ≤ LEV ≤ DEC.level

DEC = chgwdeccfs(DEC,'all',CA,CD) replaces all the approximation and 
detail coefficients. CA must be a matrix and CD must be a cell array of length 
DEC.level.

If COEFS (or CA or CD) is a single number, then it replaces all the related  
coefficients. Otherwise, COEFS (or CA, or CD) must be a matrix of appropriate 
size.

For a real value V, DEC = chgwdeccfs(DEC,'all',V) replaces all the 
coefficients by V.

DEC = chgwdeccfs(...,IDXSIG) replaces the coefficients for the signals whose  
indices are given by the vector IDXSIG. If the initial data are stored row-wise or 
column-wise in a matrix X, then IDXSIG contains the row or column indices, 
respectively, of the data. 

Examples % Load original 1D-multisignal
load thinker

% Perform a decomposition at level 2 using wavelet db2
dec = mdwtdec('r',X,2,'db2');



chgwdeccfs

8-49

% Change the coefficients of details at level 1.
% Replace all values by 0.
decBIS = chgwdeccfs(dec,'cd',0,1);

% Change the coefficients of details at level 1 and 
% level 2 for signals 31 to 35. Replace all values by 0.
decTER = chgwdeccfs(dec,'cd',0,1:2,31:35);

% Compare original and new coefficients for details
% at level 1 for signals 31 to 35.
plot(dec.cd{1}(31:35,:)','b'); hold on;
plot(decTER.cd{1}(31:35,:)','r')

See Also mdwtdec, mdwtrec
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8cmorwavfPurpose Complex Morlet wavelet

Syntax [PSI,X] = cmorwavf(LB,UB,N,FB,FC)

Description [PSI,X] = cmorwavf(LB,UB,N,FB,FC) returns values of the complex Morlet 
wavelet defined by a positive bandwidth parameter FB, a wavelet center 
frequency FC, and the expression

PSI(X) = ((pi*FB)^(-0.5))*exp(2*i*pi*FC*X)*exp(-X^2/FB) 

on an N point regular grid for the interval [LB,UB].

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set bandwidth and center frequency parameters.
fb = 1.5; fc = 1;

% Set effective support and grid parameters.
lb = -8; ub = 8; n = 1000;

% Compute complex Morlet wavelet cmor1.5-1.
[psi,x] = cmorwavf(lb,ub,n,fb,fc);

% Plot complex Morlet wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Morlet wavelet cmor1.5-1')
xlabel('Real part'), grid
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subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid

See Also waveinfo

References Teolis, A. (1998), Computational signal processing with wavelets, Birkhauser, 
p. 65.
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8coifwavfPurpose Coiflet wavelet filter

Syntax F = coifwavf(W)

Description F = coifwavf(W) returns the scaling filter associated with the Coiflet wavelet 
specified by the string W where W = 'coifN'. Possible values for N are 1, 2, 3, 4, 
or 5.

Examples % Set coiflet wavelet name. 
wname = 'coif2'; 

% Compute the corresponding scaling filter. 
f = coifwavf(wname)

f =
Columns 1 through 7 
0.0116 -0.0293 -0.0476 0.2730 0.5747 0.2949 -0.0541

Columns 8 through 12
-0.0420 0.0167 0.0040 -0.0013 -0.0005

See Also waveinfo
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8cwtPurpose Real or complex continuous 1-D wavelet coefficient

Syntax COEFS = cwt(S,SCALES,'wname')
COEFS = cwt(S,SCALES,'wname','plot')
COEFS = cwt(S,SCALES,'wname',PLOTMODE)
COEFS = cwt(S,SCALES,'wname',PLOTMODE,XLIM)

Description cwt is a one-dimensional wavelet analysis function. 

COEFS = cwt(S,SCALES,'wname') computes the continuous wavelet 
coefficients of the vector S at real, positive SCALES, using the wavelet whose 
name is 'wname' (see waveinfo for more information).

The signal S is real, the wavelet can be real or complex.

COEFS = cwt(S,SCALES,'wname','plot') computes and, in addition, plots the 
continuous wavelet transform coefficients. 

COEFS = cwt(S,SCALES,'wname',PLOTMODE) computes and plots the 
continuous wavelet transform coefficients.

Coefficients are colored using PLOTMODE. Valid values for the string PLOTMODE 
are listed in the table below.

COEFS = cwt(...,'plot') is equivalent to COEFS = cwt(...,'absglb').

PLOTMODE Description

'lvl' Coloration made scale-by-scale

'glb' Coloration made considering all scales

'abslvl' or 
'lvlabs' 

Coloration made scale-by-scale using the absolute 
values of the coefficients

'absglb' or 
'glbabs' 

Coloration made considering all scales using the 
absolute values of the coefficients
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Note  You can get 3-D plots (surfaces) using the same keywords listed above 
for the PLOTMODE parameter, preceded by '3D'. For example: 
COEFS = cwt(...,'3Dplot')or COEFS = cwt(...,'3Dlvl') ...

COEFS = cwt(S,SCALES,'wname',PLOTMODE,XLIM) computes and plots the 
continuous wavelet transform coefficients.  Coefficients are colored using 
PLOTMODE and XLIM, where XLIM is a vector, [x1 x2], with 1 ≤ x1 < x2 ≤ 
length(S)

Let s be the signal and ψ the wavelet. The wavelet coefficient of s at scale a and 
position b is defined by

Since s(t) is a discrete signal, we use a piecewise constant interpolation of the 
s(k) values, k = 1 to length(s).

COEFS = cwt(...,'scal')
[COEFS,SC] = cwt(...,'scal')
COEFS = cwt(...,'scalCNT')
[COEFS,SC] = cwt(...,'scalCNT') computes the continuous wavelet 
transform coefficients and the corresponding scalogram  which represents the 
percentage of energy for each coefficient. When PLOTMODE is equal to 'scal', a 
scaled image of the scalogram is displayed, or when PLOTMODE is equal to 
'scalCNT', a contour representation of the  scalogram is displayed.

For each given scale a within the vector SCALES, the wavelet coefficients Ca,b 
are computed for b = 1 to ls = length(s), and are stored in COEFS(i,:) if 
a = SCALES(i). 

Output argument COEFS is an la-by-ls matrix, where la is the length of SCALES. 
COEFS is a real or complex matrix, depending on the wavelet type.

Examples of valid uses are as follows:

t = linspace(-1,1,512);
s = 1-abs(t);
c = cwt(s,1:32,'cgau4');

Ca b, s t( ) 1
a

-------ψ t b–
a

-----------⎝ ⎠
⎛ ⎞ td

R
∫=
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c = cwt(s,[64 32 16:-2:2],'morl');
c = cwt(s,[3 18 12.9 7 1.5],'db2');
c = cwt(s,1:64,'sym4','abslvl',[100 400]);
[c,sc] = cwt(s,1:64,'sym4','scal');
[c,sc] = cwt(s,1:64,'sym4','scalCNT');

Examples This example demonstrates the difference between discrete and continuous 
wavelet transforms.

% Load a fractal signal. 
load vonkoch 
vonkoch=vonkoch(1:510); 
lv = length(vonkoch);

subplot(311), plot(vonkoch);title('Analyzed signal.'); 
set(gca,'Xlim',[0 510])
% Perform discrete wavelet transform at level 5 by sym2. 
% Levels 1 to 5 correspond to scales 2, 4, 8, 16 and 32. 
[c,l] = wavedec(vonkoch,5,'sym2');

% Expand discrete wavelet coefficients for plot. 
% Levels 1 to 5 correspond to scales 2, 4, 8, 16 and 32. 
cfd = zeros(5,lv); 
for k = 1:5 

d = detcoef(c,l,k); 
d = d(ones(1,2^k),:); 
cfd(k,:) = wkeep(d(:)',lv); 

end 

cfd = cfd(:); 
I = find(abs(cfd)<sqrt(eps)); 
cfd(I)=zeros(size(I)); 
cfd = reshape(cfd,5,lv);

% Plot discrete coefficients. 
subplot(312), colormap(pink(64)); 
img = image(flipud(wcodemat(cfd,64,'row'))); 
set(get(img,'parent'),'YtickLabel',[]); 
title('Discrete Transform, absolute coefficients.') 
ylabel('level')

% Perform continuous wavelet transform by sym2 at all integer 
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% scales from 1 to 32. 
subplot(313)
ccfs = cwt(vonkoch,1:32,'sym2','plot'); 
title('Continuous Transform, absolute coefficients.') 
colormap(pink(64)); 
ylabel('Scale')
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% Editing some graphical properties,
% the following figure is generated.

Algorithm
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So at any scale a, the wavelet coefficients Ca,b for b = 1 to length(s) can be 
obtained by convolving the signal s and a dilated and translated version of the 

integrals of the form  (given by intwave), and taking the finite 

difference using diff.

See Also cwtext, wavedec, wavefun, waveinfo, wcodemat

ψ
∞–
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∫ t( ) td
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8cwtextPurpose Real or complex continuous 1-D wavelet coefficients using extension 
parameters

Syntax COEFS = cwtext(S,SCALES,'wname')
COEFS = cwtext(S,SCALES,'wname',PropName1,ProVal1, ...)

Description COEFS = cwtext(S,SCALES,'wname') computes the continuous wavelet 
coefficients of the vector S at real, positive SCALES, using a wavelet named 
'wname'. The signal S is real; the wavelet can be real or complex. 

COEFS = cwtext(S,SCALES,'wname',PropName1,ProVal1, ...) computes and 
plots the continuous wavelet  transform coefficients using extra parameters. 
Valid  values for PropName are: 

• 'ExtMode'

• 'ExtSide'

• 'ExtLen'

• 'PlotMode'

• 'xlim'

The continuous wavelet transform coefficients are computed using the 
extension parameters: 

• 'ExtMode'

• 'ExtSide'

• 'ExtLen'

Valid values for ExtMode are:

• 'zpd' (zero padding)

• 'sp0' (smooth extension of order 0) 

• 'sp1' (smooth extension of order 1) 

 etc.

Valid values for ExtSide are:

• ExtSide = 'l' (or 'u') for left (or up) extension

• ExtSide = 'r' (or 'd') for right (or down) extension
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• ExtSide = 'b' for extension on both sides

• ExtSide = 'n' null extension

For the complete list of valid values for ExtMode and ExtSide, see wextend.

ExtLen is the length of extension.

Default values for extension parameters are 'zpd' and 'b'. ExtLen is 
computed using the maximum of SCALES.

Instead of three parameters, use the following syntaxes:

EXTMODE = struct('Mode',ModeVAL,'Side',SideVAL,'Len',LenVAL);

EXTMODE = {ModeVAL,SideVAL,LenVAL};

COEFS = cwtext(...,'PlotMode',PLOTMODE) computes and plots the 
continuous wavelet transform coefficients. Coefficients are colored using 
PLOTMODE:

• PLOTMODE = 'lvl' (By scale)

• PLOTMODE = 'glb' (All scales)

• PLOTMODE = 'abslvl' or 'lvlabs' (Absolute value and By scale)

• PLOTMODE = 'absglb' or 'glbabs' (Absolute value and All scales)

You get 3-D plots (surfaces) using the same keywords listed above for the 
PLOTMODE parameter, preceded by '3D', for example, PLOTMODE = '3Dlvl'.

 

When PLOTMODE = 'scal' or  'scalCNT' the continuous wavelet transform 
coefficients and the corresponding scalogram (percentage of energy for each  
coefficient) are computed.

When PLOTMODE is 'scal', a scaled image of scalogram is displayed. When 
PLOTMODE is 'scalCNT', a contour representation of scalogram is displayed.

If the XLIM parameter is given, the continuous wavelet transform coefficients 
are colored using PLOTMODE and XLIM.

XLIM = [x1 x2] with 1 <= x1 < x2 <= length(S).
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For each given scale a within the vector SCALES, the wavelet coefficients C(a,b) 
are computed for b = 1 to ls = length(S), and are stored in COEFS(i,:) if 
a = SCALES(i).

Output argument COEFS is a la-by-ls matrix where la is the length of SCALES. 
COEFS is a real or complex matrix depending on the wavelet type.

Examples of valid use are as follows:

t = linspace(-1,1,512);
s = 1-abs(t);
c = cwtext(s,1:32,'cgau4');
c = cwtext(s,[64 32 16:-2:2],'morl');
c = cwtext(s,[3 18 12.9 7 1.5],'db2');
c = cwtext(s,1:32,'sym2','plotMode','lvl');
c = cwtext(s,1:64,'sym4','plotMode','abslvl','xlim',[100 400]);

[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scal');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT');
[c,Sc] = cwtext(s,1:64,'sym4','plotMode','scalCNT', ...

'extMode','sp1');

c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','sp0');
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode','sp1');
c = cwtext(s,1:64,'sym4','plotMode','lvl', ...

'extMode',{'sp1','b',300});

ext = struct('Mode','sp1','Side','b','Len',300);
c = cwtext(s,1:64,'sym4','plotMode','lvl','extMode',ext);

Examples This example demonstrates the difference between a continuous wavelet 
transform which deals with signal extension and one which does not.

% Load and plot the signal
load wcantor
plot(wcantor)
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% Compute and plot the coefficients
cwt(wcantor,(1:256),'mexh','absglb');
colormap(pink(4))
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In this figure above, which is produced by the cwt function, the values of 
coefficients are tremendously affected by the boundary effect due to the 
discontinuity of the signal on the right. The default (zero-padding) extension 
mode on the right explains this important discontinuity because the last value 
is 1. On the left there is no effect because the first value is 0.

% Compute and plot the coefficients with adapted extension mode
figure;
cwtext(wcantor,(1:256),'mexh','extmode','sp0','extLen',2000, ...
         'plotMode','absglb');
colormap(pink(4))

In this figure, produced by the cwtext function, the suitable extension mode of 
the signal is very efficient, giving as it can be seen, a good result.

See Also cwt, wavedec, wavefun, waveinfo, wcodemat
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8dbauxPurpose Daubechies wavelet filter computation

Syntax W = dbaux(N,SUMW)
W = dbaux(N)

Description W = dbaux(N,SUMW) is the order N Daubechies scaling filter such that 
sum(W) = SUMW. Possible values for N are 1, 2, 3, ... 

Note  Instability may occur when N is too large.

W = dbaux(N) is equivalent to W = dbaux(N,1)

W = dbaux(N,0) is equivalent to W = dbaux(N,1)

Examples % P the Lagrange  trous  filter for N=2 is explicit 
% and given by: 
P = [ -1/16 0 9/16 1 9/16 0 -1/16]

P =
-0.0625 0 0.5625 1.0000 0.5625 0 -0.0625

% The db2 Daubechies scaling filter w, is a 
% solution of the equation: P = conv(wrev(w),w) * 2.
%
% This filter P is symmetric, easy to generate, and w is 
% a minimum phase solution of the previous equation, 
% based on the roots of P. 
rP = roots(P);

% Retaining only the root inside the unit circle (here it
% is the sixth value of rP), and two roots located at -1, 
% we obtain the Daubechies wavelet of order 2:
ww = poly([rP(6) -1 -1]); % filter construction
ww = ww / sum(ww) % normalize sum

ww =
0.3415 0.5915 0.1585 -0.0915
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% Check that ww is correct and equal to 
% the db2 Daubechies scaling filter w. 
w = dbaux(2)

w =
0.3415 0.5915 0.1585 -0.0915

Algorithm The algorithm used is based on a result obtained by Shensa (see “References”), 
showing a correspondence between the “Lagrange à trous” filters and the 
convolutional squares of the Daubechies wavelet filters.

The computation of the order N Daubechies scaling filter w proceeds in two 
steps: compute a “Lagrange à trous” filter P, and extract a square root. More 
precisely:

• P the associated “Lagrange à trous” filter is a symmetric filter of length 
4N-1. P is defined by

P = [a(N) 0 a(N-1) 0 ... 0  a(1) 1 a(1) 0 a(2) 0 ... 0 a(N)]

where

• Then, if w denotes dbN Daubechies scaling filter of sum , w is a square 
root of P: 

P = conv(wrev(w),w) where w is a filter of length 2N. 

The corresponding polynomial has N zeros located at -1 and N-1 zeros less 
than 1 in modulus. 

Note that other methods can be used; see various solutions of the spectral 
factorization problem in Strang-Nguyen (p. 157). 
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Limitations The computation of the dbN Daubechies scaling filter requires the extraction of 
the roots of a polynomial of order 4N. Instability may occur when N is too large.

See Also dbwavf, wfilters

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics, SIAM Ed.

Shensa, M.J. (1992), “The discrete wavelet transform: wedding the a trous and 
Mallat Algorithms,” IEEE Trans. on Signal Processing, vol. 40, 10, 
pp. 2464-2482.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.
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8dbwavfPurpose Daubechies wavelet filter

Syntax F = dbwavf(W)

Description F = dbwavf(W) returns the scaling filter associated with Daubechies wavelet 
specified by the string W where W = 'dbN'. Possible values for N are 1, 2, 3, ..., 
45.

Examples % Set Daubechies wavelet name. 
wname = 'db4'; 

% Compute the corresponding scaling filter. 
f = dbwavf(wname)

f =
Columns 1 through 7 
0.1629 0.5055 0.4461 -0.0198 -0.1323 0.0218 0.0233
Column 8 
-0.0075

See Also dbaux, waveinfo, wfilters
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8ddencmpPurpose Default values for de-noising or compression

Syntax [THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X)
[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X)
[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X)

Description ddencmp is a de-noising and compression-oriented function.

ddencmp gives default values for all the general procedures related to 
de-noising and compression of one- or two-dimensional signals, using wavelets 
or wavelet packets.

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,IN2,X) returns default values for 
de-noising or compression, using wavelets or wavelet packets, of an input 
vector or matrix X, which can be a one- or two-dimensional signal. THR is the 
threshold, SORH is for soft or hard thresholding, KEEPAPP allows you to keep 
approximation coefficients, and CRIT (used only for wavelet packets) is the 
entropy name (see wentropy for more information).

IN1 is 'den' for de-noising or 'cmp' for compression.

IN2 is 'wv' for wavelet or 'wp' for wavelet packet.

For wavelets (three output arguments):

[THR,SORH,KEEPAPP] = ddencmp(IN1,'wv',X) returns default values for 
de-noising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X. These values 
can be used for wdencmp. 

For wavelet packets (four output arguments):

[THR,SORH,KEEPAPP,CRIT] = ddencmp(IN1,'wp',X) returns default values for 
de-noising (if IN1 = 'den') or compression (if IN1 = 'cmp') of X. These values 
can be used for wpdencmp.

Examples % The current extension mode is zero-padding (see dwtmode).

% Generate Gaussian white noise. 
init = 2055415866; randn('seed',init); 
x = randn(1,1000);
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% Find default values for wavelets (3 output arguments). 
% These values can be used for wdencmp with option 'gbl'.

% default for de-noising: 
% soft thresholding and approximation coefficients kept 
% thr = sqrt(2*log(n)) * s
% where s is an estimate of level noise
% and n is equal to prod(size(x)).
[thr,sorh,keepapp] = ddencmp('den','wv',x) 

thr =
3.8593

sorh =
    s
keepapp =

1

% default for compression: 
% hard thresholding and approximation coefficients kept 
% thr = median(abs(detail at level 1)) if nonzero 
% else thr = 0.05 * max(abs(detail at level 1)). 
[thr,sorh,keepapp] = ddencmp('cmp','wv',x)

thr =
0.7003

sorh =
h
keepapp =

1

% Find default values for wavelet packets (4 output arguments). 
% These values can be used for wpdencmp.

% default for de-noising: 
% soft thresholding and appr. cfs. kept 
% thr = sqrt(2*log(n*log(n)/log(2)))
% the noise level is supposed to be equal to 1; 
% default entropy is 'sure' criterion. 
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x) 
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thr =
4.2911

sorh =
    h
keepapp =

1
crit =
    sure

% default for compression. 
% hard thresholding and approximation coefficients kept 
% thr = median(abs(detail at level 1)) 
% default entropy is 'threshold' criterion. 
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr =
0.7003

sorh =
    h
keepapp =

1
crit =
    threshold

See Also wdencmp, wenergy, wpdencmp

References Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE, Trans. on Inf. 
Theory, 41, 3, pp. 613–627.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone (1994), “Ideal de-noising in an orthonormal basis 
chosen from a library of bases,” C.R.A.S. Paris, Ser. I, t. 319, pp. 1317–1322.
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8depo2indPurpose Node depth-position to node index

Syntax N = depo2ind(ORD,[D P]) 

Description depo2ind is a tree-management utility. 

For a tree of order ORD, N = depo2ind(ORD,[D P]) computes the indices N of 
the nodes whose depths and positions are encoded within [D,P].

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

D and P are column vectors. The values of depths D and positions P must be such 
that D ≥ 0 and 0 ≤ P ≤ ORDD-1.

Output indices N are such that 0 ≤ N < (ORDmax(D)-1) / (ORD-1).

Note that for a column vector X, we have depo2ind(O,X) = X.

Examples % Create initial tree. 
ord = 2; 
t = ntree(ord,3); % binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% List t nodes (Depth_Position). 
aln_depo = allnodes(t,'deppos')
aln_depo =

0 0 
1 0 
1 1 
2 0 
2 1 
2 2 
2 3 
3 0 
3 1 
3 6 
3 7

% Switch from Depth_Position to index.
aln_ind = depo2ind(ord,aln_depo)
aln_ind =

0
1
2
3
4
5
6
7
8
13
14

See Also ind2depo
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8detcoefPurpose 1-D detail coefficients

Syntax D = detcoef(C,L,N)
D = detcoef(C,L)

Description detcoef is a one-dimensional wavelet analysis function. 

D = detcoef(C,L,N) extracts the detail coefficients at level N from the wavelet 
decomposition structure [C,L]. See wavedec for more information on C and L. 

Level N must be an integer such that 1 ≤ N ≤ NMAX
where NMAX = length(L)-2. 

D = detcoef(C,L) extracts the detail coefficients at last level NMAX.

If N is a vector of integers such that 1 ≤ N(j) ≤ NMAX:

• DCELL = detcoef(C,L,N,'cells') returns a cell array where DCELL{j} 
contains the coefficients of detail N(j).

• If length(N) > 1, DCELL = detcoef(C,L,N) is equivalent to 
DCELL = detcoef(C,L,N,'cells').

• DCELL = detcoef(C,L,'cells') is equivalent to 
DCELL = detcoef(C,L,[1:NMAX]).

• [D1, ... ,Dp] = detcoef(C,L,[N(1), ... ,N(p)]) extracts the details 
coefficients at levels [N(1), ... ,N(p)].

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal. 
load leleccum; 
s = leleccum(1:3920); 

% Perform decomposition at level 3 of s using db1. 
[c,l] = wavedec(s,3,'db1');
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% Extract detail coefficients at levels 
% 1, 2 and 3, from wavelet decomposition 
% structure [c,l]. 
[cd1,cd2,cd3] = detcoef(c,l,[1 2 3]);

% Using some plotting commands,
% the following figure is generated.

See Also appcoef, wavedec
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8detcoef2Purpose 2-D detail coefficients

Syntax D = detcoef2(O,C,S,N) 

Description detcoef2 is a two-dimensional wavelet analysis function. 

D = detcoef2(O,C,S,N) extracts from the wavelet decomposition structure 
[C,S] the horizontal, vertical, or diagonal detail coefficients for O = 'h'(or 'v' 
or 'd', respectively), at level N, where N must be an integer such that 1 ≤ N ≤ 
size(S,1)-2. See wavedec2 for more information on C and S.

[H,V,D] = detcoef2('all',C,S,N) returns the horizontal H, vertical V, and 
diagonal D detail coefficients at level N.

D = detcoef2('compact',C,S,N) returns the detail coefficients at level N, 
stored row-wise.

detcoef2('a',C,S,N) is equivalent to detcoef2('all',C,S,N).

detcoef2('c',C,S,N) is equivalent to detcoef2('compact',C,S,N).

Remarks If C and S are obtained from an indexed image analysis or a truecolor image 
analysis,  D is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman;
 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db1.
[c,s] = wavedec2(X,2,'db1');
sizex = size(X)
sizex =

256 256
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sizec = size(c)
sizec =

1 65536

val_s = s 
val_s =

64 64
64 64

128 128
256 256

% Extract details coefficients at level 2 
% in each orientation, from wavelet decomposition 
% structure [c,s]. 
[chd2,cvd2,cdd2] = detcoef2('all',c,s,2); 
sizecd2 = size(chd2)
sizecd2 =

64 64

% Extract details coefficients at level 1 
% in each orientation, from wavelet decomposition 
% structure [c,s]. 
[chd1,cvd1,cdd1] = detcoef2('all',c,s,1); 
sizecd1 = size(chd1)
sizecd1 =

128 128

See Also appcoef2, wavedec2
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8dispPurpose WPTREE information

Syntax disp(T)

Description disp(T)displays the content of the WPTREE object T.

Examples % Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
disp(t)

 Wavelet Packet Object Structure 
=================================
 Size of initial data       : [1 1000]
 Order                      : 2
 Depth                      : 2
 Terminal nodes             : [3  4  5  6]
--------------------------------------------------
 Wavelet Name               : db2
 Low Decomposition filter   : [-0.1294  0.2241  0.8365  0.483]
 High Decomposition filter  : [ -0.483  0.8365 -0.2241 -0.1294]
 Low Reconstruction filter  : [  0.483  0.8365  0.2241 -0.1294]
 High Reconstruction filter : [-0.1294 -0.2241  0.8365 -0.483]
--------------------------------------------------
 Entropy Name               : shannon
 Entropy Parameter          : 0
--------------------------------------------------

 See Also get, read, set, write
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8displsPurpose Display lifting scheme

Syntax S = displs(LS,FRM)

Description S = displs(LS,FRM) returns a string describing the lifting scheme LS. The 
format string FRM  (see sprintf) builds S. 

displs(LS) is equivalent to DISPLS(LS,'%12.8f')

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Visualize the obtained lifting scheme.
displs(lshaar);

lshaar = {...                            
'd'             [ -1.00000000]  [0]  
'p'             [  0.50000000]  [0]  
[  1.41421356]  [  0.70710678]  []   
};                                   

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
displs(lsnew);

lsnew = {...                                        
'd'             [ -1.00000000]              [0]  
'p'             [  0.50000000]              [0]  
'p'             [ -0.12500000  0.12500000]  [0]  
[  1.41421356]  [  0.70710678]              []   
};                                               

See Also lsinfo
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8drawtreePurpose Draw wavelet packet decomposition tree (GUI)

Syntax drawtree(T)
drawtree(T,F)
F = drawtree(T)

Description drawtree(T) draws the wavelet packet tree T, and F = drawtree(T) also 
returns the figure’s handle.

For an existing figure F produced by a previous call to the drawtree function, 
drawtree(T,F) draws the wavelet packet tree T in the figure whose handle is 
F. For more information see Chapter 5 of the User’s Guide, “Using Wavelet 
Packets” and Appendix B, “Wavelet Toolbox™ Software and Object 
Programming”.

Examples x   = sin(8*pi*[0:0.005:1]);
t   = wpdec(x,3,'db2');
fig = drawtree(t);
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%---------------------------------------
% Use command line function to modify t.
%---------------------------------------
t   = wpjoin(t,2);
drawtree(t,fig);
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See Also readtree
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8dtreePurpose DTREE constructor

Syntax T = dtree(ORD,D,X)
T = dtree(ORD,D,X,U)
[T,NB] = dtree(...)
T = dtree('PropName1',PropValue1,'PropName2',PropValue2, ...)

Description T = dtree(ORD,D,X) returns a complete data tree (DTREE) object of order ORD 
and depth D. The data associated with the tree T is X.

With T = dtree(ORD,D,X,U) you can set a user data field.

[T,NB] = dtree(...) returns also the number of terminal nodes (leaves) of T.

[T,NB] = dtree('PropName1',PropValue1,'PropName2',PropValue2,...) is 
the most general syntax to construct a DTREE object.

The valid choices for 'PropName' are

The split scheme field is an order ORD by 1 logical array. The root of the tree 
can be split and it has ORD children. If spsch(j) = 1, you can split the j-th 
child. Each node that you can split has the same property as the root node.

For more information on object fields, type help dtree/get.

Class DTREE (Parent class: NTREE)

Fields

'order' Order of the tree

'depth' Depth of the tree

'data' Data associated to the tree

'spsch' Split scheme for nodes

'ud' User data field

dtree Parent object

allNI All nodes information

terNI Terminal nodes information
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Examples % Create a data tree.
x = [1:10];
t = dtree(3,2,x);
t = nodejoin(t,2);

See Also ntree, wtbo
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8dwtPurpose Single-level discrete 1-D wavelet transform

Syntax [cA,cD] = dwt(X,'wname')
[cA,cD] = dwt(X,'wname','mode',MODE)
[cA,cD] = dwt(X,Lo_D,Hi_D)
[cA,cD] = dwt(X,Lo_D,Hi_D,'mode',MODE)

Description The dwt command performs a single-level one-dimensional wavelet 
decomposition with respect to either a particular wavelet ('wname', see 
wfilters for more information) or particular wavelet decomposition filters 
(Lo_D and Hi_D) that you specify.

[cA,cD] = dwt(X,'wname') computes the approximation coefficients vector cA 
and detail coefficients vector cD, obtained by a wavelet decomposition of the 
vector X. The string 'wname' contains the wavelet name.

[cA,cD] = dwt(X,Lo_D,Hi_D) computes the wavelet decomposition as above, 
given these filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Let lx = the length of X and lf = the length of the filters Lo_D and Hi_D; then 
length(cA) = length(cD) = la where la = ceil(lx/2), if the DWT 
extension mode is set to periodization. For the other extension modes, 
la = floor(lx+lf-1)/2).

For more information about the different Discrete Wavelet Transform 
extension modes, see dwtmode. 

[cA,cD] = dwt(...,'mode',MODE) computes the wavelet decomposition with 
the extension mode MODE that you specify. MODE is a string containing the 
desired extension mode.

Example: 

[cA,cD] = dwt(x,'db1','mode','sym');
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Examples % The current extension mode is zero-padding (see dwtmode).

% Construct elementary original one-dimensional signal. 
randn('seed',531316785) 
s = 2 + kron(ones(1,8),[1 -1]) + ...

((1:16).^2)/32 + 0.2*randn(1,16);

% Perform single-level discrete wavelet transform of s by haar.
[ca1,cd1] = dwt(s,'haar'); 
subplot(311); plot(s); title('Original signal'); 
subplot(323); plot(ca1); title('Approx. coef. for haar'); 
subplot(324); plot(cd1); title('Detail coef. for haar');

% For a given wavelet, compute the two associated decomposition 
% filters and compute approximation and detail coefficients 
% using directly the filters. 
[Lo_D,Hi_D] = wfilters('haar','d'); 
[ca1,cd1] = dwt(s,Lo_D,Hi_D);

% Perform single-level discrete wavelet transform of s by db2
% and observe edge effects for last coefficients.
% These extra coefficients are only used to ensure exact 
% global reconstruction.
[ca2,cd2] = dwt(s,'db2');
subplot(325); plot(ca2); title('Approx. coef. for db2'); 
subplot(326); plot(cd2); title('Detail coef. for db2');
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% Editing some graphical properties,
% the following figure is generated.

Algorithm Starting from a signal s, two sets of coefficients are computed: approximation 
coefficients CA1, and detail coefficients CD1. These vectors are obtained by 
convolving s with the low-pass filter Lo_D for approximation and with the 
high-pass filter Hi_D for detail, followed by dyadic decimation.

More precisely, the first step is
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The length of each filter is equal to 2N. If n = length(s), the signals F and G 
are of length n + 2N - 1, and then the coefficients CA1 and CD1 are of length

To deal with signal-end effects involved by a convolution-based algorithm, a 
global variable managed by dwtmode is used. This variable defines the kind of 
signal extension mode used. The possible options include zero-padding (used in 
the previous example) and symmetric extension, which is the default mode.

Note  For the same input, this dwt function and the DWT block in the Signal 
Processing Blockset do not produce the same results. The blockset is designed 
for real-time implementation while Wavelet Toolbox™ software is designed for 
analysis, so they produce handle boundary conditions and filter states 
differently. 

To make the dwt function output match the DWT block output, set the 
function boundary condition to zero-padding by typing dwtmode('zpd') at the 
MATLAB® command prompt. To match the latency of the DWT block, which is 
implemented using FIR filters, add zeros to the input of the dwt function.  The 
number of zeros you add must be equal to half the filter length.

See Also dwtmode, idwt, wavedec, waveinfo

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, 
no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

floor n 1–
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8dwt2Purpose Single-level discrete 2-D wavelet transform

Syntax [cA,cH,cV,cD] = dwt2(X,'wname')
[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)

Description The dwt2 command performs a single-level two-dimensional wavelet 
decomposition with respect to either a particular wavelet ('wname', see 
wfilters for more information) or particular wavelet decomposition filters 
(Lo_D and Hi_D) you specify.

[cA,cH,cV,cD] = dwt2(X,'wname') computes the approximation coefficients 
matrix cA and details coefficients matrices cH, cV, and cD (horizontal, vertical, 
and diagonal, respectively), obtained by wavelet decomposition of the input 
matrix X. The 'wname' string contains the wavelet name.

[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D) computes the two-dimensional wavelet 
decomposition as above, based on wavelet decomposition filters that you 
specify.

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Let sx = size(X) and lf = the length of filters; then 
size(cA) = size(cH) = size(cV) = size(cD) = sa where sa = ceil(sx/2), 
if the DWT extension mode is set to periodization. For the other extension 
modes, sa = floor((sx+lf-1)/2).

For information about the different Discrete Wavelet Transform extension 
modes, see dwtmode.

[cA,cH,cV,cD] = dwt2(...,'mode',MODE) computes the wavelet 
decomposition with the extension mode MODE that you specify. 

MODE is a string containing the desired extension mode.

An example of valid use is 

[cA,cH,cV,cD] = dwt2(x,'db1','mode','sym');
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Remarks When X represents an indexed image, then X, as well as the output arrays 
cA,cH,cV,cD are m-by-n matrices. When X represents a truecolor image, it is an 
m-by-n-by-3 array, where each m-by-n matrix represents a red, green, or blue 
color plane concatenated along the third dimension.  

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image.
load woman;

% X contains the loaded image. 
% map contains the loaded colormap. 
nbcol = size(map,1);

% Perform single-level decomposition 
% of X using db1. 
[cA1,cH1,cV1,cD1] = dwt2(X,'db1');

% Images coding. 
cod_X = wcodemat(X,nbcol); 
cod_cA1 = wcodemat(cA1,nbcol); 
cod_cH1 = wcodemat(cH1,nbcol); 
cod_cV1 = wcodemat(cV1,nbcol); 
cod_cD1 = wcodemat(cD1,nbcol); 
dec2d = [... 

cod_cA1, cod_cH1; ... 
cod_cV1, cod_cD1  ... 
];

% Using some plotting commands,
% the following figure is generated.
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Algorithm For images, there exist an algorithm similar to the one-dimensional case for 
two-dimensional wavelets and scaling functions obtained from one- 
dimensional ones by tensorial product.

This kind of two-dimensional DWT leads to a decomposition of approximation 
coefficients at level j in four components: the approximation at level j + 1, and 
the details in three orientations (horizontal, vertical, and diagonal).

The following chart describes the basic decomposition steps for images:

Original image X.
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Note  To deal with signal-end effects involved by a convolution-based 
algorithm, a global variable managed by dwtmode is used. This variable 
defines the kind of signal extension mode used. The possible options include 
zero-padding (used in the previous example) and symmetric extension, which 
is the default mode.

See Also dwtmode, idwt2, wavedec2, waveinfo
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989),”A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 
pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)
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8dwtmodePurpose Discrete wavelet transform extension mode

Syntax ST = dwtmode
dwtmode('mode')

Description The dwtmode command sets the signal or image extension mode for discrete 
wavelet and wavelet packet transforms. The extension modes represent 
different ways of handling the problem of border distortion in signal and image 
analysis. For more information, see the section “Dealing with Border 
Distortion” in Chapter 6, “Advanced Concepts”, of the User’s Guide.

dwtmode or dwtmode('status') display the current mode.

ST = dwtmode or ST = dwtmode('status') display and returns in ST the 
current mode.

ST = dwtmode('status','nodisp') returns in ST the current mode and no 
text (status or warning) is displayed in the MATLAB® command window.

dwtmode('mode') sets the DWT extension mode according to the value of  'mode':

'mode' DWT Extension Mode

'sym' or 'symh' Symmetric-padding (half-point): boundary value 
symmetric replication — default mode

'symw' Symmetric-padding (whole-point): boundary 
value symmetric replication

'asym' or 'asymh' Antisymmetric-padding (half-point): boundary 
value antisymmetric replication

'asymw' Antisymmetric-padding (whole-point): boundary 
value antisymmetric replication

'zpd' Zero-padding

'spd' or 'sp1' Smooth-padding of order 1 (first derivative 
interpolation at the edges)
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For more information on symmetric extension modes see “References”.

The DWT associated with these five modes is slightly redundant. But, the 
IDWT ensures a perfect reconstruction for any of the five previous modes 
whatever is the extension mode used for DWT.

dwtmode('per') sets the DWT mode to periodization.

This mode produces the smallest length wavelet decomposition. But, the 
extension mode used for IDWT must be the same to ensure a perfect 
reconstruction.

Using this mode, dwt and dwt2 produce the same results as the obsolete 
functions dwtper and dwtper2, respectively.

All functions and GUI tools involving the DWT (1-D & 2-D) or Wavelet Packet 
transform (1-D & 2-D) use the specified DWT extension mode.

dwtmode updates a global variable allowing the use of these six signal 
extensions. The extension mode should only be changed using this function. 
Avoid changing the global variable directly.

The default mode is loaded from the file DWTMODE.DEF (in the current path) if it 
exists. If not, the file DWTMODE.CFG (in the toolbox/wavelet/wavelet directory) 
is used.

dwtmode('save',MODE) saves MODE as the new default mode in the file 
DWTMODE.DEF (in the current directory). If a file with the same name already 
exists in the current directory, it is deleted before saving.

dwtmode('save') is equivalent to dwtmode('save',CURRENTMODE).

In these last two cases, the new default mode saved in the file DWTMODE.DEF will 
be active as default mode in the next MATLAB session.

'sp0' Smooth-padding of order 0 (constant extension at 
the edges)

'ppd' Periodic-padding (periodic extension at the 
edges)

'mode' DWT Extension Mode
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Examples % If the DWT extension mode global variable does not
% exist, default is Symmetrization.
clear global
dwtmode
                                          
******************************************
**  DWT Extension Mode: Symmetrization  **
******************************************
                                          
% Display current DWT signal extension mode.
dwtmode

******************************************
**  DWT Extension Mode: Symmetrization  **
******************************************
% Change to Periodization extension mode.
dwtmode('per')

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!  WARNING: Change DWT Extension Mode  !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************

% Display current DWT signal extension mode.
dwtmode
                                         
*****************************************
**  DWT Extension Mode: Periodization  **
*****************************************

Note  You should change the extension mode only by using dwtmode. Avoid 
changing the global variable directly.

See Also idwt, idwt2, dwt, dwt2, wextend
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References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley- Cambridge 
Press.
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8dyaddownPurpose Dyadic downsampling

Syntax Y = dyaddown(X,EVENODD)
Y = dyaddown(X)
Y = dyaddown(X,EVENODD,'type')
Y = dyaddown(X,'type',EVENODD)

Description Y = dyaddown(X,EVENODD) where X is a vector, returns a version of X that has 
been downsampled by 2. Whether Y contains the even- or odd-indexed samples 
of X depends on the value of positive integer EVENODD:

• If EVENODD is even, then Y(k) = X(2k).

• If EVENODD is odd, then Y(k) = X(2k+1). 

Y = dyaddown(X) is equivalent to Y = dyaddown(X,0) (even-indexed samples).

Y = dyaddown(X,EVENODD,'type') or Y = dyaddown(X,'type',EVENODD), 
where X is a matrix, returns a version of X obtained by suppressing one out of 
two:

according to the parameter EVENODD, which is as above.

If you omit the EVENODD or 'type' arguments, dyaddown defaults to EVENODD = 
0 (even-indexed samples) and 'type' = 'c' (columns).

Y = dyaddown(X) is equivalent to Y = dyaddown(X,0,'c'). 
Y = dyaddown(X,'type') is equivalent to Y = dyaddown(X,0,'type'). 
Y = dyaddown(X,EVENODD) is equivalent to Y = dyaddown(X,EVENODD,'c').

Examples % For a vector.
s = 1:10 
s =

1 2 3 4 5 6 7 8 9 10

dse = dyaddown(s) % Downsample elements with even indices.

Columns of X If 'type' = 'c'

Rows of X If 'type' = 'r'

Rows and columns of X If 'type' = 'm'
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dse =
 2 4 6  8 10

% or equivalently 
dse = dyaddown(s,0)
dse =

 2 4 6 8 10

dso = dyaddown(s,1) % Downsample elements with odd indices.
dso =

 1 3 5 7 9

% For a matrix.
s = (1:3)'*(1:4)
s =

1 2 3 4
2 4 6 8
3 6 9 12

dec = dyaddown(s,0,'c') % Downsample columns with even indices.
dec =

 2 4
4 8
6 12

der = dyaddown(s,1,'r') % Downsample rows with odd indices.
der =
 1 2 3 4
3 6 9 12

dem = dyaddown(s,1,'m') % Downsample rows and columns
                        % with odd indices.
dem =
     1     3
     3     9

See Also dyadup

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.
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8dyadupPurpose Dyadic upsampling

Syntax Y = dyadup(X,EVENODD)
Y = dyadup(X)
Y = dyadup(X,EVENODD,'type')
Y = dyadup(X,'type',EVENODD)

Description dyadup implements a simple zero-padding scheme very useful in the wavelet 
reconstruction algorithm.

Y = dyadup(X,EVENODD), where X is a vector, returns an extended copy of vector 
X obtained by inserting zeros. Whether the zeros are inserted as even- or 
odd-indexed elements of Y depends on the value of positive integer EVENODD:

• If EVENODD is even, then Y(2k 1) = X(k), Y(2k) = 0. 

• If EVENODD is odd, then Y(2k 1) = 0, Y(2k) = X(k). 

Y = dyadup(X) is equivalent to Y = dyadup(X,1) (odd-indexed samples).

Y = dyadup(X,EVENODD,'type') or Y = dyadup(X,'type',EVENODD), where X 
is a matrix, returns extended copies of X obtained by inserting

according to the parameter EVENODD, which is as above.

If you omit the EVENODD or 'type' arguments, dyadup defaults to EVENODD = 1 
(zeros in odd-indexed positions) and 'type' = 'c' (insert columns).

Y = dyadup(X) is equivalent to Y = dyaddown(X,1,'c').

Y = dyadup(X,'type') is equivalent to Y = dyadup(X,1,'type'). 
Y = dyadup(X,EVENODD) is equivalent to Y = dyadup(X,EVENODD,'c').

Columns in X If 'type' = 'c'

Rows in X If 'type' = 'r'

Rows and columns in X If 'type' = 'm'
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Examples % For a vector.
s = 1:5 
s =

1 2 3 4 5

dse = dyadup(s) % Upsample elements at odd indices.
dse =

0 1 0 2 0 3 0 4 0 5 0

% or equivalently 
dse = dyadup(s,1)
dse =

0 1 0 2 0 3 0 4 0 5 0

dso = dyadup(s,0) % Upsample elements at even indices.
dso =

1 0 2 0 3 0 4 0 5

% For a matrix.
s = (1:2)'*(1:3)
s = 

1 2 3
2 4 6

der = dyadup(s,1,'r') % Upsample rows at even indices.
der =

0 0 0
1 2 3
0 0 0
2 4 6
0 0 0

doc = dyadup(s,0,'c') % Upsample columns at odd indices.
doc =

1 0 2 0 3
2 0 4 0 6
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dem = dyadup(s,1,'m') % Upsample rows and columns
                      % at even indices.
dem =
     0     0     0     0     0     0     0
     0     1     0     2     0     3     0
     0     0     0     0     0     0     0
     0     2     0     4     0     6     0
     0     0     0     0     0     0     0

% Using default values for dyadup and dyaddown, we have: 
% dyaddown(dyadup(s)) = s. 
s = 1:5
s =

1 2 3 4 5

uds = dyaddown(dyadup(s))
uds =

1 2 3 4 5

% In general reversed identity is false.

See Also dyaddown

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.
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8entrupdPurpose Entropy update (wavelet packet)

Syntax T = entrupd(T,ENT)
T = entrupd(T,ENT,PAR)

Description entrupd is a one- or two-dimensional wavelet packet utility. 

T = entrupd(T,ENT) or T = entrupd(T,ENT,PAR) returns for a given wavelet 
packet tree T, the updated tree using the entropy function ENT with the optional 
parameter PAR (see wenergy for more information).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 2 with db1 wavelet packets 
% using shannon entropy. 
t = wpdec(x,2,'db1','shannon');

% Read entropy of all the nodes. 
nodes = allnodes(t);
ent = read(t,'ent',nodes);
ent'
ent =

1.0e+04 *
-5.8615 -6.8204 -0.0350 -7.7901 -0.0497 -0.0205 -0.0138

% Update nodes entropy. 
t = entrupd(t,'threshold',0.5); 
nent = read(t,'ent');
nent'
nent =

937 488 320 241 175 170 163

See Also wenergy, wpdec, wpdec2
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8fbspwavfPurpose Complex frequency B-spline wavelet

Syntax [PSI,X] = fbspwavf(LB,UB,N,M,FB,FC)

Description [PSI,X] = fbspwavf(LB,UB,N,M,FB,FC) returns values of the complex 
frequency B-Spline wavelet defined by the order parameter M (M is an integer 
such that 1 ≤ M), a bandwidth parameter FB, and a wavelet center frequency FC.

The function PSI is computed using the explicit expression

PSI(X) = (FB^0.5)*((sinc(FB*X/M).^M).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC  > 0 and > FB > 0. 

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set order, bandwidth and center frequency parameters.
m = 2; fb = 1; fc = 0.5;

% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;

% Compute complex Frequency B-Spline wavelet fbsp2-0.5-1.
[psi,x] = fbspwavf(lb,ub,n,m,fb,fc);
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% Plot complex Frequency B-Spline wavelet.
subplot(211)
plot(x,real(psi))
title('Complex Frequency B-Spline wavelet fbsp2-0.5-1')
xlabel('Real part'), grid
subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid

See Also waveinfo

References Teolis, A. (1998), Computational signal processing with wavelets, Birkhauser, 
p. 63.
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8filt2lsPurpose Transform quadruplet of filters to lifting scheme

Syntax LS = filt2ls(LoD,HiD,LoR,HiR)

Description LS = filt2lsv(LoD,HiD,LoR,HiR) returns the lifting scheme LS associated 
with the four input filters LoD, HiD, LoR, and HiR that verify the perfect 
reconstruction condition.

Examples [LoD,HiD,LoR,HiR] = wfilters('db2')

LoD =

   -0.1294    0.2241    0.8365    0.4830

HiD =

   -0.4830    0.8365   -0.2241   -0.1294

LoR =

    0.4830    0.8365    0.2241   -0.1294

HiR =

   -0.1294   -0.2241    0.8365   -0.4830

LS = filt2ls(LoD,HiD,LoR,HiR);
displs(LS);

LS = {...                                         
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};                                                

LSref = liftwave('db2');
displs(LSref);
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LSref = {...                                         
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};                                                

See Also ls2filt, lsinfo
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8gauswavfPurpose Gaussian wavelet

Syntax [PSI,X] = gauswavf(LB,UB,N,P)

Description [PSI,X] = gauswavf(LB,UB,N,P) returns values of the P-th derivative of the 
Gaussian function on an N point regular grid for the interval [LB,UB]. Cp is 
such that the 2-norm of the P-th derivative of F is equal to 1.

For P > 8, Symbolic Math Toolbox™ software is required.

Output arguments are the wavelet function PSI computed on the grid X.

[PSI,X] = gauswavf(LB,UB,N) is equivalent to 
[PSI,X] = gauswavf(LB,UB,N,1).

These wavelets have an effective support of [-5 5].

Examples % Set effective support and grid parameters.
lb = -5; ub = 5; n = 1000;

% Compute Gaussian wavelet of order 8.
[psi,x] = gauswavf(lb,ub,n,8);
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% Plot Gaussian wavelet of order 8.
plot(x,psi),
title('Gaussian wavelet of order 8'), grid

See Also waveinfo
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8getPurpose WPTREE contents

Syntax [FieldValue1,FieldValue2, ] = get(T,'FieldName1','FieldName2', )
[FieldValue1,FieldValue2, ] = get(T)

Description [FieldValue1,FieldValue2, ] = get(T,'FieldName1','FieldName2', ) 
returns the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can get the subfield contents, 
giving the name of these subfields as 'FieldName' values. (See “Examples” 
below.)

[FieldValue1,FieldValue2, ] = get(T) returns all the field contents of the  
tree T.

The valid choices for 'FieldName' are

The fields of the wavelet information structure, 'wavInfo', are also valid for 
'FieldName':

The fields of the entropy information structure, 'entInfo', are also valid for 
'FieldName':

'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)

'entName' Entropy name

'entPar' Entropy parameter



get

8-110

Or fields of DTREE parent object:

Or fields of NTREE parent object:

Or fields of WTBO parent object:

Examples % Compute a wavelet packets tree
x = rand(1,1000);
t = wpdec(x,2,'db2');
o = get(t,'order');
[o,tn] = get(t,'order','tn');
[o,allNI,tn] = get(t,'order','allNI','tn');
[o,wavInfo,allNI,tn] = get(t,'order','wavInfo','allNI','tn');
[o,tn,Lo_D,EntName] = get(t,'order','tn','Lo_D','EntName');
[wo,nt,dt] = get(t,'wtbo','ntree','dtree');

See Also disp, read, set, write

'ntree' NTREE parent object

'allNI' All nodes information

'terNI' Terminal nodes information

'wtbo' WTBO parent object

'order' Order of the tree

'depth' Depth of the tree

'spsch' Split scheme for nodes

'tn' Array of terminal nodes of the tree

'wtboInfo' Object information

'ud' Userdata field
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8idwtPurpose Single-level inverse discrete 1-D wavelet transform

Syntax X = idwt(cA,cD,'wname')
X = idwt(cA,cD,Lo_R,Hi_R)
X = idwt(cA,cD,'wname',L)
X = idwt(cA,cD,Lo_R,Hi_R,L)
X = idwt(...,'mode',MODE)

Description The idwt command performs a single-level one-dimensional wavelet 
reconstruction with respect to either a particular wavelet ('wname', see 
wfilters for more information) or particular wavelet reconstruction filters 
(Lo_R and Hi_R) that you specify.

X = idwt(cA,cD,'wname') returns the single-level reconstructed 
approximation coefficients vector X based on approximation and detail 
coefficients vectors cA and cD, and using the wavelet 'wname'. 

X = idwt(cA,cD,Lo_R,Hi_R) reconstructs as above using filters that you 
specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length. 

Let la be the length of cA (which also equals the length of cD) and lf the length 
of the filters Lo_R and Hi_R; then length(X) = LX where LX = 2*la if the DWT 
extension mode is set to periodization. For the other extension modes 
LX = 2*la-lf+2.

For more information about the different Discrete Wavelet Transform 
extension modes, see dwtmode. 

X = idwt(cA,cD,'wname',L) or X = idwt(cA,cD,Lo_R,Hi_R,L) returns the 
length-L central portion of the result obtained using idwt(cA,cD,'wname'). 
L must be less than LX.

X = idwt(...,'mode',MODE) computes the wavelet reconstruction using the 
specified extension mode MODE.

X = idwt(cA,[],...) returns the single-level reconstructed approximation 
coefficients vector X based on approximation coefficients vector cA.
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X = idwt([],cD,...) returns the single-level reconstructed detail coefficients 
vector X based on detail coefficients vector cD.

idwt is the inverse function of dwt in the sense that the abstract statement 
idwt(dwt(X,'wname'),'wname') would give back X.

Examples % The current extension mode is zero-padding (see dwtmode).

% Construct elementary one-dimensional signal s. 

randn('seed',531316785) 
s = 2 + kron(ones(1,8),[1 -1]) + ... 
    ((1:16).^2)/32 + 0.2*randn(1,16);

% Perform single-level dwt of s using db2.

[ca1,cd1] = dwt(s,'db2'); 
subplot(221); plot(ca1); 
title('Approx. coef. for db2'); 
subplot(222); plot(cd1); 
title('Detail coef. for db2');

% Perform single-level inverse discrete wavelet transform, 
% illustrating that idwt is the inverse function of dwt. 

ss = idwt(ca1,cd1,'db2'); 
err = norm(s-ss); % Check reconstruction. 
subplot(212); plot([s;ss]'); 
title('Original and reconstructed signals'); 
xlabel(['Error norm = ',num2str(err)])

% For a given wavelet, compute the two associated
% reconstruction filters and inverse transform using 
% the filters directly.

[Lo_R,Hi_R] = wfilters('db2','r'); 
ss = idwt(ca1,cd1,Lo_R,Hi_R);
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% Using some plotting commands,
% the following figure is generated.

Algorithm Starting from the approximation and detail coefficients at level j, cAj and cDj, 
the inverse discrete wavelet transform reconstructs cAj-1, inverting the 
decomposition step by inserting zeros and convolving the results with the 
reconstruction filters.
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Error norm = 1.435e−12
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See Also dwt, dwtmode, upwlev

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no. 
7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)
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8idwt2Purpose Single-level inverse discrete 2-D wavelet transform

Syntax X = idwt2(cA,cH,cV,cD,'wname')
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)
X = idwt2(cA,cH,cV,cD,'wname',S)
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)
X = idwt2(...,'mode',MODE)

Description The idwt2 command performs a single-level two-dimensional wavelet 
reconstruction with respect to either a particular wavelet ('wname', see 
wfilters for more information) or particular wavelet reconstruction filters 
(Lo_R and Hi_R) that you specify.

X = idwt2(cA,cH,cV,cD,'wname') uses the wavelet 'wname' to compute the 
single-level reconstructed approximation coefficients matrix X, based on 
approximation matrix cA and details matrices cH,cV, and cD (horizontal, 
vertical, and diagonal, respectively).

X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R) reconstructs as above, using filters that 
you specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length. 

Let sa = size(cA) = size(cH) = size(cV) = size(cD) and lf the length of 
the filters; then size(X) = SX, where SX = 2* SA, if the DWT extension mode 
is set to periodization. For the other extension modes, SX = 2*size(cA)-lf+2.

For more information about the different Discrete Wavelet Transform 
extension modes, see dwtmode. 

X = idwt2(cA,cH,cV,cD,'wname',S) and 
X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) return the size-S central portion of the 
result obtained using the syntax idwt2(cA,cH,cV,cD,'wname'). S must be less 
than SX.

X = idwt2(...,'mode',MODE) computes the wavelet reconstruction using the 
extension mode MODE that you specify. 
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X = idwt2(cA,[],[],[],...) returns the single-level reconstructed 
approximation coefficients matrix X based on approximation coefficients 
matrix cA.

X = idwt2([],cH,[],[],...) returns the single-level reconstructed detail 
coefficients matrix X based on horizontal detail coefficients matrix cH.

The same result holds for X = idwt2([],[],cV,[],...) and
X = idwt2([],[],[],cD,...), based on vertical and diagonal details.

More generally, X = idwt2(AA,HH,VV,DD,...) returns the single-level 
reconstructed matrix X, where AA can be cA or [], and so on.

idwt2 is the inverse function of dwt2 in the sense that the abstract statement 
idwt2(dwt2(X,'wname'),'wname') would give back X.

Remarks If cA,cH,cV,cD are obtained from an indexed image analysis or a truecolor 
image analysis, they are m-by-n matrices or m-by-n-by-3 arrays, respectively. 

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman;

% X contains the loaded image. 
sX = size(X);

% Perform single-level decomposition 
% of X using db4. 
[cA1,cH1,cV1,cD1] = dwt2(X,'db4');

% Invert directly decomposition of X 
% using coefficients at level 1. 
A0 = idwt2(cA1,cH1,cV1,cD1,'db4',sX);

% Check for perfect reconstruction. 
max(max(abs(X-A0)))
ans =
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3.4176e-10

Algorithm 

See Also dwt2, dwtmode, upwlev2

Two-Dimensional IDWT

Reconstruction step
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8ilwtPurpose Inverse 1-D lifting wavelet transform

Syntax X = ilwt(AD_In_Place,W)
X = ilwt(CA,CD,W)
X = ilwt(AD_In_Place,W,LEVEL)
X = ilwt(CA,CD,W,LEVEL)
X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC)

Description ilwt performs a 1-D lifting wavelet reconstruction with respect to a particular 
lifted wavelet that you specify.

X = ilwt(AD_In_Place,W) computes the reconstructed vector X using the 
approximation and detail coefficients vector AD_In_Place obtained by a lifting 
wavelet reconstruction. W is a lifted wavelet name (see liftwave).

X = ilwt(CA,CD,W) computes the reconstructed vector X using the 
approximation coefficients vector CA and detail coefficients vector CD obtained 
by a lifting wavelet reconstruction.

X = ilwt(AD_In_Place,W,LEVEL) or X = ILWT(CA,CD,W,LEVEL) computes the 
lifting wavelet reconstruction, at level LEVEL.

X = ilwt(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or 
X = ilwt(CA,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' 
computes the wavelet or the wavelet packet decomposition using lifting, at 
level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: 
X = ilwt(...,LS,...) instead of  X = ILWT(...,W,...).

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);
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% Perform LWT at level 1 of a simple signal.
x = 1:8;
[cA,cD] = lwt(x,lsnew);

% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt);

% Invert the two transforms.
xRec = ilwt(cA,cD,lsnew);
err = max(max(abs(x-xRec)))

err =

  4.4409e-016

xRecInt = ilwt(cAint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))

errInt =

     0

See Also lwt
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8ilwt2Purpose Inverse 2-D lifting wavelet transform

Syntax X = ilwt2(AD_In_Place,W)
X = ilwt2(CA,CH,CV,CD,W)
X = ilwt2(AD_In_Place,W,LEVEL)
X = ilwt2(CA,CH,CV,CD,W,LEVEL)
X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC)
X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC)

Description ilwt2 performs a 2-D lifting wavelet reconstruction with respect to a particular 
lifted wavelet that you specify.

X = ilwt2(AD_In_Place,W) computes the reconstructed matrix X using the 
approximation and detail coefficients matrix AD_In_Place, obtained by a lifting 
wavelet decomposition. W is a lifted wavelet name (see liftwave).

X = ilwt2(CA,CH,CV,CD,W) computes the reconstructed matrix X using the 
approximation coefficients vector CA and detail coefficients vectors CH, CV, and 
CD obtained by a lifting wavelet decomposition.

X = ilwt2(AD_In_Place,W,LEVEL) or X = ILWT2(CA,CH,CV,CD,W,LEVEL) 
computes the lifting wavelet reconstruction, at level LEVEL.

X = ilwt2(AD_In_Place,W,LEVEL,'typeDEC',typeDEC) or 
X = ilwt2(CA,CH,CV,CD,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' 
or 'wp' computes the wavelet or the wavelet packet decomposition using 
lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: 
X = ilwt2(...,LS,...) instead of  X = ilwt2(...,W,...).

For more information about lifting schemes, see lsinfo.

Remarks If AD_In_Place or cA,cH,cV,cD are obtained from an indexed image analysis 
or a truecolor image analysis, they are m-by-n matrices or m-by-n-by-3 arrays,  
respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % Start from the Haar wavelet and get the
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% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew);

% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt);

% Invert the two transforms.
xRec = ilwt2(cA,cH,cV,cD,lsnew);
err = max(max(abs(x-xRec)))

err =

     0

xRecInt = ilwt2(cAint,cHint,cVint,cDint,lsnewInt);
errInt = max(max(abs(x-xRecInt)))

errInt =

     0    

See Also lwt2
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8ind2depoPurpose Node index to node depth-position

Syntax [D,P] = ind2depo(ORD,N)

Description ind2depo is a tree-management utility. 

For a tree of order ORD, [D,P] = ind2depo(ORD,N) computes the depths D and 
the positions P (at these depths D) for the nodes with indices N. 

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

N must be a column vector of integers (N  0).

Note that [D,P] = ind2depo(ORD,[D P]).

Examples % Create initial tree.
ord = 2; t = ntree(ord,3); % Binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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% List t nodes (index).
aln_ind = allnodes(t)

aln_ind =
0 
1 
2 
3 
4 
5 
6 
7 
8 
13 
14

% Switch from index to Depth_Position. 
[depth,pos] = ind2depo(ord,aln_ind); 
aln_depo = [depth,pos]

aln_depo =
0 0 
1 0 
1 1 
2 0 
2 1 
2 2 
2 3 
3 0 
3 1 
3 6 
3 7

See Also depo2ind
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8intwavePurpose Integrate wavelet function psi (ψ)

Syntax [INTEG,XVAL] = intwave('wname',PREC)
[INTEG,XVAL] = intwave('wname',PREC,PFLAG)
[INTEG,XVAL] = intwave('wname')

Description [INTEG,XVAL] = intwave('wname',PREC) computes the integral, INTEG, of the 

wavelet function ψ (from  to XVAL values):  for x in XVAL. 

The function ψ is approximated on the 2PREC points grid XVAL where PREC is a 
positive integer. 'wname' is a string containing the name of the wavelet ψ (see 
wfilters for more information). 

Output argument INTEG is a real or complex vector depending on the wavelet 
type.

For biorthogonal wavelets,

[INTDEC,XVAL,INTREC] = intwave('wname',PREC) computes the integrals, 
INTDEC and  INTREC, of the wavelet decomposition function ψdec and the 
wavelet reconstruction function ψrec.

[INTEG,XVAL] = intwave('wname',PREC) is equivalent to 
[INTEG,XVAL] = intwave('wname',PREC,0).

[INTEG,XVAL] = intwave('wname') is equivalent to 
[INTEG,XVAL] = intwave('wname',8). 

When used with three arguments intwave('wname',IN2,IN3), 
PREC = max(IN2,IN3) and plots are given.

When IN2 is equal to the special value 0, intwave('wname',0) is equivalent to 
intwave('wname',8,IN3).

intwave('wname') is equivalent to intwave('wname',8).

intwave is used only for continuous analysis (see cwt for more information).

∞– ψ y( ) yd
∞–

x

∫
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Examples % Set wavelet name. 
wname = 'db4';

% Plot wavelet function. 
[phi,psi,xval] = wavefun(wname,7);
subplot(211); plot(xval,psi); title('Wavelet'); 

% Compute and plot wavelet integrals approximations 
% on a dyadic grid. 
[integ,xval] = intwave(wname,7); 
subplot(212); plot(xval,integ); 
title(['Wavelet integrals over [-Inf x] ' ... 

'for each value of xval']);

Algorithm First, the wavelet function is approximated on a grid of 2PREC points using 
wavefun. A piecewise constant interpolation is used to compute the integrals 
using cumsum.

See Also wavefun

0 1 2 3 4 5 6 7
−1

0

1

2
Wavelet

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4
Wavelet integrals over [−Inf x] for each value of xval
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8isnodePurpose Existing node test

Syntax R = isnode(T,N) 

Description isnode is a tree-management utility. 

R = isnode(T,N) returns 1’s for nodes N, which exist in the tree T, and 0’s for 
others.

N can be a column vector containing the indices of nodes or a matrix, that 
contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the position 
of the i-th node. 

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create initial tree. 
ord = 2; 
t = ntree(ord,3); % binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

% Check node index. 
isnode(t,[1;3;25])

ans =
1 
1 
0

% Check node Depth_Position.
isnode(t,[1 0;3 1;4 5])

ans =
1 
1
0

See Also istnode, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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8istnodePurpose Terminal nodes indices test

Syntax R = istnode(T,N) 

Description istnode is a tree-management utility. 

R = istnode(T,N) returns ranks (in left to right terminal nodes ordering) for 
terminal nodes N belonging to the tree T, and 0’s for others. 

N can be a column vector containing the indices of nodes or a matrix that 
contains the depths and positions of nodes.

In the last case, N(i,1) is the depth of the i-th node and N(i,2) is the position 
of the i-th node. 

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create initial tree. 
ord = 2; 
t = ntree(ord,3); % binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

% Change Node Label from Depth_Position to Inde
% (see the plot function)x.

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Find terminal nodes and return indices for terminal 
% nodes in the tree.
istnode(t,[14])
ans =

6

istnode(t,[15])
ans =

0

istnode(t,[1;7;14;25])
ans =

0 
1 
6 
0

istnode(t,[1 0;3 1;4 5])
ans =

0
2
0

See Also isnode, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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8iswtPurpose Inverse discrete stationary wavelet transform 1-D

Syntax X = iswt(SWC,'wname')
X = iswt(SWA,SWD,'wname')
X = iswt(SWC,Lo_R,Hi_R)
X = iswt(SWA,SWD,Lo_R,Hi_R)

Description iswt performs a multilevel 1-D stationary wavelet reconstruction using either 
a specific orthogonal wavelet ('wname', see wfilters for more information) or 
specific reconstruction filters (Lo_R and Hi_R).

X = iswt(SWC,'wname') or X = iswt(SWA,SWD,'wname') or 
X = iswt(SWA(end,:),SWD,'wname') reconstructs the signal X based on the 
multilevel stationary wavelet decomposition structure SWC or [SWA,SWD] (see 
swt for more information).

X = iswt(SWC,Lo_R,Hi_R) or X = iswt(SWA,SWD,Lo_R,Hi_R) or 
X = iswt(SWA(end,:),SWD,Lo_R,Hi_R) reconstruct as above, using filters 
that you specify.

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Examples % Load original 1D signal.
load noisbloc; s = noisbloc;
                
% Perform SWT decomposition at level 3 of s using db1.
swc = swt(s,3,'db1');
% Second usage.
[swa,swd] = swt(s,3,'db1');

% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt(swc,'db1');
% Second usage.
a0bis = iswt(swa,swd,'db1');
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% Check for perfect reconstruction.
err = norm(s-a0)
err =
  9.6566e-014

errbis = norm(s-a0bis)
errbis =
  9.6566e-014

Algorithm See the section “Stationary Wavelet Transform” in Chapter 6, “Advanced 
Concepts”, of the User’s Guide.

See Also idwt, swt, waverec

References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform and 
some statistical applications,” Lecture Notes in Statistics, 103, pp. 281–299.

Coifman, R.R.; Donoho D.L. (1995), “Translation invariant de-noising,” Lecture 
Notes in Statistics, 103, pp 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant orthonormal 
wavelet representations,” IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964–1970.
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8iswt2Purpose Inverse discrete stationary wavelet transform 2-D

Syntax X = iswt2(SWC,'wname')
X = iswt2(A,H,V,D,'wname')
X = iswt2(SWC,Lo_R,Hi_R)
X = iswt2(A,H,V,D,Lo_R,Hi_R)

Description iswt2 performs a multilevel 2-D stationary wavelet reconstruction using either 
a specific orthogonal wavelet ('wname' see wfilters for more information) or 
specific reconstruction filters (Lo_R and Hi_R).

X = iswt2(SWC,'wname') or X = iswt2(A,H,V,D,'wname') or 
X = iswt2(A(:,:,end),H,V,D,'wname') reconstructs the signal X, based on 
the multilevel stationary wavelet decomposition structure SWC or [A,H,V,D] 
(see swt2).

X = iswt2(SWC,Lo_R,Hi_R) or X = iswt2(A,H,V,D,Lo_R,Hi_R) or 
X = iswt2(A(:,:,end),H,V,D,Lo_R,Hi_R) reconstructs as in the previous 
syntax, using filters that you specify:

• Lo_R is the reconstruction low-pass filter.

• Hi_R is the reconstruction high-pass filter.

Lo_R and Hi_R must be the same length.

Remarks If SWC or (cA,cH,cV,cD) are obtained from an indexed image analysis or a 
truecolor image analysis, then X is an m-by-n matrix or an m-by-n-by-3 array, 
respectively. 

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % Load original image.
load nbarb1;
                
% Perform SWT decomposition
% of X at level 3 using sym4.
swc = swt2(X,3,'sym4');
% Second usage.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');
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% Reconstruct s from the stationary wavelet
% decomposition structure swc.
a0 = iswt2(swc,'sym4');
% Second usage.
a0 = iswt2(ca,chd,cvd,cdd,'sym4');
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% Check for perfect reconstruction.
err = max(max(abs(X-a0)))
ans =
  2.3482e-010

errbis = max(max(abs(X-a0bis)))
ans =
  2.3482e-010

Algorithm See the section “Stationary Wavelet Transform” in Chapter 6, “Advanced 
Concepts”, of the User’s Guide.

See Also idwt2, swt2, waverec2

References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform and 
some statistical applications,” Lecture Notes in Statistics, 103, pp. 281–299.

Coifman, R.R.; Donoho D.L. (1995), “Translation invariant de-noising,” Lecture 
Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant orthonormal 
wavelet representations,” IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964–1970.
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8laurmatPurpose Laurent matrices constructor

Syntax M = laurmat(V)

Description M = laurmat(V) returns the Laurent matrix object M associated with V which 
can be a cell array (at most two dimensional) of Laurent polynomials (see 
laurpoly) or an ordinary matrix.

Examples % Define Laurent matrices.
M1 = laurmat(eye(2,2))
 
      | 1     0  |
      |          |
 M1 = |          |
      |          |
      | 0     1  |

Z  = laurpoly(1,1);
M2 = laurmat({1 Z;0 1})
 
      | 1     z^(+1)  |
      |               |
 M2 = |               |
      |               |
      | 0       1     |

% Calculus on Laurent polynomials.
P = M1 * M2
 
     | 1     z^(+1)  |
     |               |
 P = |               |
     |               |
     | 0       1     |

d = det(P)
 
d(z) = 1
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References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge 
Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second 
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

See Also laurpoly
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8laurpolyPurpose Laurent polynomials constructor

Syntax P = laurpoly(C,d)
P = laurpoly(C,'dmin',d)
P = laurpoly(C,'dmax',d)

Description P = laurpoly(C,d) returns a Laurent polynomial object. C is a vector whose 
elements are the coefficients of the polynomial P and d is the highest degree of 
the monomials of P.

If m is the length of the vector C, P represents the following Laurent polynomial:

P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)

P = laurpoly(C,'dmin',d) specifies the lowest degree instead of the highest 
degree of monomials of P. The corresponding output P represents the following 
Laurent polynomial:

P(z) = C(1)*z^(d+m-1) + ... + C(m-1)*z^(d+1) + C(m)*z^d

P = laurpoly(C,'dmax',d) is equivalent to P = laurpoly(C,d).

Examples % Define Laurent polynomials.
P = laurpoly([1:3],2);
P = laurpoly([1:3],'dmax',2)
 
P(z) = + z^(+2) + 2*z^(+1) + 3

P = laurpoly([1:3],'dmin',2)
 
P(z) = + z^(+4) + 2*z^(+3) + 3*z^(+2)

% Calculus on Laurent polynomials.
Z = laurpoly(1,1)
 
Z(z) = z^(+1)

Q = Z*P
 
Q(z) = + z^(+5) + 2*z^(+4) + 3*z^(+3)
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R = Z^1 - Z^-1
 
R(z) = + z^(+1) - z^(-1)

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge 
Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second 
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.

See Also laurmat
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8leavesPurpose Determine terminal nodes

Syntax N = leaves(T)
N = leaves(T,'dp')
[N,K] = leaves(T,'sort')
[N,K] = leaves(T,'sortdp')

Description N = leaves(T) returns the indices of terminal nodes of the tree T where N is a 
column vector.

The nodes are ordered from left to right as in tree T.   

[N,K] = leaves(T,'s') or [N,K] = leaves(T,'sort') returns sorted indices. 
M = N(K) are the indices reordered as in tree T, from left to right.

N = leaves(T,'dp') returns a matrix N, which contains the depths and 
positions of terminal nodes.

N(i,1) is the depth of the i-th terminal node, and N(i,2) is the position of the 
i-th terminal node.

[N,K] = leaves(T,'sortdp') or [N,K] = leaves(T,'sdp') returns sorted 
nodes.

Examples % Create initial tree.
ord = 2; 
t = ntree(ord,3);        % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% List terminal nodes (index).
tnodes_ind = leaves(t)
tnodes_ind =
     7
     8
     4
     5
    13
    14

% List terminal nodes (sorted on index).
[tnodes_ind,Ind] = leaves(t,'sort')
tnodes_ind =
     4
     5
     7
     8
    13
    14

Ind =
     3
     4
     1
     2
     5
     6

% List terminal nodes (Depth_Position).
tnodes_depo = leaves(t,'dp')
tnodes_depo =
     3     0
     3     1
     2     1
     2     2
     3     6
     3     7

% List terminal nodes (sorted on Depth_Position).
[tnodes_depo,Ind] = leaves(t,'sortdp')
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tnodes_depo =
     2     1
     2     2
     3     0
     3     1
     3     6
     3     7

Ind =
     3
     4
     1
     2
     5
     6

See Also tnodes, noleaves
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8liftfiltPurpose Apply elementary lifting steps on quadruplet of filters

Syntax [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS)
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS,TYPE,VALUE)

Description [LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,ELS) returns the four 
filters LoDN, HiDN, LoRN, and HiRN obtained by an elementary lifting step (ELS) 
starting from the four filters LoD, HiD, LoR, and HiR. The four input filters verify 
the perfect reconstruction condition. 

ELS is a structure such that

• TYPE = ELS.type contains the type of the elementary lifting step. The valid 
values for TYPE are 'p' (primal) or 'd' (dual).

• VALUE = ELS.value contains the Laurent polynomial T associated with the 
elementary lifting step (see laurpoly). If VALUE is a vector, the associated 
Laurent polynomial T is equal to laurpoly(VALUE,0).

In addition, ELS may be a scaling step. In that case, TYPE is equal to 's' 
(scaling) and VALUE is a scalar different from zero.

liftfilt(LoD,HiD,LoR,HiR,ELS,TYPE,VALUE) gives the same outputs.

Note  If TYPE =  'p' , HiD and LoR are unchanged.
If TYPE = 'd' , LoD and HiR are unchanged.
If TYPE = 's' , the four filters are changed.
If ELS is an array of elementary lifting steps, liftfilt(...,ELS) performs 
each step successively.

liftfilt(...,FLAGPLOT) plots the successive biorthogonal pairs—scaling 
function and wavelet.

Examples % Get Haar filters.
[LoD,HiD,LoR,HiR] = wfilters('haar');

% Lift the Haar filters.
twoels(1) = struct('type','p','value',...
laurpoly([0.125 -0.125],0));
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twoels(2) = struct('type','p','value',...
laurpoly([0.125 -0.125],1));
[LoDN,HiDN,LoRN,HiRN] = liftfilt(LoD,HiD,LoR,HiR,twoels);

% The biorthogonal wavelet bior1.3 is obtained up to
% an unsignificant sign.
[LoDB,HiDB,LoRB,HiRB] = wfilters('bior1.3');
samewavelet = 
isequal([LoDB,HiDB,LoRB,HiRB],[LoDN,-HiDN,LoRN,HiRN])
    
samewavelet =

     1

See Also laurpoly
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8liftwavePurpose Lifting schemes

Syntax LS = liftwave(WNAME)
LS = liftwave(WNAME,'Int2Int')

Description LS = liftwave(WNAME) returns the lifting scheme associated with the wavelet 
specified by WNAME. LS is a structure, not an integer, and used by lwt, ilwt, 
lwt2, etc.

LS = liftwave(WNAME,'Int2Int') performs an integer to integer wavelet 
transform. Using 'Int2Int' produces an LS such that when you use 
[CA,CD] = lwt(X,LS) or Y = lwt(X,LS) and X is a vector of integers, the 
resulting CA, CD, and Y are vectors of integers. If you omit 'Int2Int' then lwt 
produces vectors of real numbers.

The valid values for WNAME are

WNAME Values Comments

'lazy' A “lazy” wavelet is a 
second-generation 
wavelet and is not a 
true mathematical 
wavelet.

'haar' Same as 'db1', 
'bior1.1', and 
'cdf1.1'

'db1', 'db2', 'db3', 'db4', 'db5', 'db6', 
'db7', 'db8'

'db2' same as 
'sym2', 'db3', and 
'sym4'

'sym2', 'sym3', 'sym4', 'sym5', 'sym6', 
'sym7', 'sym8'
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For more information about lifting schemes, see lsinfo.

Examples % Start from the db2 wavelet and get the
% corresponding lifting scheme.
lsdb2 = liftwave('db2');

% Visualize the obtained lifting scheme.
displs(lsdb2);

lsdb2 = {...                                         
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};

See Also laurpoly

Cohen-Daubechies-Feauveau wavelets
'cdf1.1','cdf1.3','cdf1.5'
'cdf3.1','cdf3.3','cdf3.5' 
'cdf5.1','cdf5.3','cdf5.5'
'cdf2.2','cdf2.4','cdf2.6'
'cdf4.2','cdf4.4','cdf4.6'
'cdf6.2','cdf6.4','cdf6.6'

'cdfX.Y' same as 
'biorX.Y' except for 
bior4.4 and 
bior5.5.

'biorX.Y' See waveinfo

'rbioX.Y' Reverse of 
'biorX.Y'.
See waveinfo

'bs3' Same as 'cdf4.2'

'rbs3' Reverse of 'bs3'

'9.7' Same as 'bior4.4'

'r9.7' Reverse of '9.7'

WNAME Values Comments
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8localmaxPurpose Compute local maxima positions

Syntax [Y,I] = localmax(X,ROWINIT,REGFLAG)
[Y,I] = localmax(X,ROWINIT)
[Y,I] = localmax(X)

Description For a matrix X, localmax computes and chains the local maxima along the 
rows.

The default values are ROWINIT = size(X,1) and REGFLAG = true.

First, localmax computes the local maxima positions on each row of X. Then, 
starting from the row (ROWINIT-1), localmax chains the maxima positions 
along the columns. If p0 is a local maxima position on the row R0, then p0 is 
linked to the nearest maxima position on the row R0+1.

Y is a matrix of the same size of X such that:

• When R = ROWINIT, then, if X(ROWINIT,j) is a local maximum, 
Y(ROWINIT,j) = j  and otherwise, Y(ROWINIT,j) = 0,.

• When R < ROWINIT, if X(R,j) is not a local maximum then Y(R,j) = 0.

• Otherwise if X(R,j) is a local maximum, then Y(R,j) = k, where k is such 
that X(R+1,k) is a local maximum and k is the nearest position of j.

I contains the indices of nonzero values of Y.

If REGFLAG = true, S = X(ROWINIT,:) is first regularized using the wavelet 
'sym4'. Instead of S, the approximation of level 5 is used to start the algorithm.
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8ls2filtPurpose Transform lifting scheme to quadruplet of filters

Syntax [LoD,HiD,LoR,HiR] = ls2filt(LS)

Description [LoD,HiD,LoR,HiR] = ls2filt(LS) returns the four filters LoD, HiD, LoR, and 
HiR associated with the lifting scheme LS.

Examples % Start from the db2 wavelet and get the
% corresponding lifting scheme.
LS = liftwave('db2')

LS = 

    'd'         [   -1.7321]    [ 0]
    'p'         [1x2 double]    [ 1]
    'd'         [         1]    [-1]
    [1.9319]    [    0.5176]      []

% Visualize the obtained lifting scheme.

displs(LS);

LS = {...                                         
'd'             [ -1.73205081]              [0]   
'p'             [ -0.06698730  0.43301270]  [1]   
'd'             [  1.00000000]              [-1]  
[  1.93185165]  [  0.51763809]              []    
};                                                

% Get the filters from the lifting scheme.

[LoD,HiD,LoR,HiR] = ls2filt(LS)

LoD =

   -0.1294    0.2241    0.8365    0.4830

HiD =
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   -0.4830    0.8365   -0.2241   -0.1294

LoR =

    0.4830    0.8365    0.2241   -0.1294

HiR =

   -0.1294   -0.2241    0.8365   -0.4830

% Get the db2 filters using wfilters.
% You can check the equality.

[LoDref,HiDref,LoRref,HiRref] = wfilters('db2')

LoDref =

   -0.1294    0.2241    0.8365    0.4830

HiDref =

   -0.4830    0.8365   -0.2241   -0.1294

LoRref =

    0.4830    0.8365    0.2241   -0.1294

HiRref =

   -0.1294   -0.2241    0.8365   -0.4830

See Also filt2ls, lsinfo
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8lsinfoPurpose Lifting schemes information

Syntax lsinfo

Description lsinfo displays the following information about lifting schemes. A lifting 
scheme LS is a N x 3 cell array. The N-1 first rows of the array are elementary 
lifting steps (ELS). The last row gives the normalization of LS.

Each ELS has this format:

{type, coefficients, max_degree}

where type is  'p' (primal) or 'd' (dual), coefficients is a vector C of real 
numbers defining the coefficients of a Laurent polynomial P described below, 
and max_degree is the highest degree d of the monomials of P.

The Laurent polynomial P is of the form

     P(z) = C(1)*z^d + C(2)*z^(d-1) + ... + C(m)*z^(d-m+1)

 The lifting scheme LS is such that for

     k = 1:N-1, LS{k,:} is an ELS, where

LS{k,1} is the lifting type 'p' (primal) or 'd' (dual).

LS{k,2} is the corresponding lifting filter.

LS{k,3} is the highest degree of the Laurent polynomial corresponding to the 
filter LS{k,2}.

LS{N,1} is the primal normalization (real number).

LS{N,2} is the dual normalization (real number).

LS{N,3} is not used.

Usually, the normalizations are such that LS{N,1}*LS{N,2} = 1.

For example, the lifting scheme associated with the wavelet db1 is

LS = {...
      'd'         [    -1]    [0]
      'p'         [0.5000]    [0]
      [1.4142]    [0.7071]     []
     }
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See Also displs, laurpoly
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8lwtPurpose 1-D lifting wavelet transform

Syntax [CA,CD] = lwt(X,W)
X_InPlace = lwt(X,W)
lwt(X,W,LEVEL)
X_InPlace = lwt(X,W,LEVEL,'typeDEC',typeDEC)
[CA,CD] = lwt(X,W,LEVEL,'typeDEC',typeDEC)

Description lwt performs a 1-D lifting wavelet decomposition with respect to a particular 
lifted wavelet that you specify.

[CA,CD] = lwt(X,W) computes the approximation coefficients vector CA and 
detail coefficients vector CD, obtained by a lifting wavelet decomposition, of the 
vector X. W is a lifted wavelet name (see liftwave).

X_InPlace = lwt(X,W) computes the approximation and detail coefficients. 
These coefficients are stored in place:

CA = X_InPlace(1:2:end) and CD = X_InPlace(2:2:end)

lwt(X,W,LEVEL) computes the lifting wavelet decomposition at level LEVEL.

X_InPlace = lwt(X,W,LEVEL,'typeDEC',typeDEC) or 
[CA,CD] = lwt(X,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' or 'wp' 
computes the wavelet or the wavelet packet decomposition using lifting, at 
level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: 
lwt(X,LS,...) instead of lwt(X,W,...).

For more information about lifting schemes, see lsinfo.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple signal.
x = 1:8;
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[cA,cD] = lwt(x,lsnew)

cA =

    1.9445    4.9497    7.7782   10.6066

cD =

    0.7071    0.7071    0.7071    0.7071

% Perform integer LWT of the same signal.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cDint] = lwt(x,lsnewInt)

cAint =

     1     3     5     7

cDint =

     1     1     1     1

Algorithm This function uses the polyphase algorithm. 

lwt reduces to dwt with zero-padding extension mode and without 
extra-coefficients.

See Also ilwt

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge 
Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second 
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.
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8lwt2Purpose 2-D lifting wavelet transform

Syntax [CA,CH,CV,CD] = lwt2(X,W)
X_InPlace = lwt2(X,LS)
lwt2(X,W,LEVEL)
X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC)
[CA,CD] = lwt2(X,W,LEVEL,'typeDEC',typeDEC)

Description lwt2 performs a 2-D lifting wavelet decomposition with respect to a particular 
lifted wavelet that you specify.

[CA,CH,CV,CD] = lwt2(X,W) computes the approximation coefficients matrix 
CA and detail coefficients matrices CH, CV, and CD, obtained by a lifting wavelet 
decomposition, of the matrix X. W is a lifted wavelet name (see liftwave).

X_InPlace = lwt2(X,LS) computes the approximation and detail coefficients. 
These coefficients are stored in place:

• CA = X_InPlace(1:2:end,1:2:end)
• CH = X_InPlace(2:2:end,1:2:end)
• CV = X_InPlace(1:2:end,2:2:end)
• CD = X_InPlace(2:2:end,2:2:end)

lwt2(X,W,LEVEL) computes the lifting wavelet decomposition at level LEVEL.

X_InPlace = lwt2(X,W,LEVEL,'typeDEC',typeDEC) or 
[CA,CH,CV,CD] = LWT2(X,W,LEVEL,'typeDEC',typeDEC) with typeDEC = 'w' 
or 'wp' computes the wavelet or the wavelet packet decomposition using 
lifting, at level LEVEL.

Instead of a lifted wavelet name, you may use the associated lifting scheme LS: 
lwt2(X,LS,...) instead of LWT2(X,W,...).

For more information about lifting schemes, see lsinfo.

Remarks When X represents an indexed image, X, as well as the output arrays 
cA,cH,cV,cD, or X_InPlace are m-by-n matrices. When X represents a truecolor 
image, it is an m-by-n-by-3 array, where each m-by-n matrix represents a red, 
green, or blue color plane concatenated along the third dimension. 

For more information on image formats, see the image and imfinfo reference 
pages .
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Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 1 of a simple image.
x = reshape(1:16,4,4);
[cA,cH,cV,cD] = lwt2(x,lsnew)

cA =

    5.7500   22.7500
   10.0000   27.0000

cH =

    1.0000    1.0000
    1.0000    1.0000

cV =

    4.0000    4.0000
    4.0000    4.0000

cD =

     0     0
     0     0

% Perform integer LWT of the same image.
lshaarInt = liftwave('haar','int2int');
lsnewInt = addlift(lshaarInt,els);
[cAint,cHint,cVint,cDint] = lwt2(x,lsnewInt)
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cAint =

     3    11
     5    13

cHint =

     1     1
     1     1

cVint =

     4     4
     4     4

cDint =

     0     0
     0     0

Algorithm This function implements the polyphase algorithm.

lwt reduces to dwt with zero-padding extension mode and without 
extra-coefficients.

See Also ilwt2

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley-Cambridge 
Press.

Sweldens, W. (1998), “The Lifting Scheme: a Construction of Second 
Generation of Wavelets,” SIAM J. Math. Anal., 29 (2), pp. 511–546.
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8lwtcoefPurpose Extract or reconstruct 1-D LWT wavelet coefficients

Syntax Y = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef(TYPE,XDEC,W,LEVEL,LEVEXT)

Description Y = lwtcoef(TYPE,XDEC,LS,LEVEL,LEVEXT) returns the coefficients or the 
reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT 
decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are

Y = lwtcoef(TYPE,XDEC,W,LEVEL,LEVEXT) returns the same output using W,  
which is the name of a lifted wavelet.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 2 of a simple signal.
x = 1:8;
xDec = lwt(x,lsnew,2)

xDec =

    4.3438    0.7071    2.1250    0.7071   13.0313    0.7071    
2.0000    0.7071

TYPE Values Description

'a' Approximations

'd' Details

'ca' Coefficients of approximations

'cd' Coefficients of details
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% Extract approximation coefficients of level 1.
ca1 = lwtcoef('ca',xDec,lsnew,2,1)

ca1 =

    1.9445    4.9497    7.7782   10.6066

% Reconstruct approximations and details.
a1 = lwtcoef('a',xDec,lsnew,2,1)

a1 =

    1.3750    1.3750    3.5000    3.5000    5.5000    5.5000    
7.5000    7.5000

a2 = lwtcoef('a',xDec,lsnew,2,2)

a2 =

    2.1719    2.1719    2.1719    2.1719    6.5156    6.5156    
6.5156    6.5156

d1 = lwtcoef('d',xDec,lsnew,2,1)

d1 =

   -0.3750    0.6250   -0.5000    0.5000   -0.5000    0.5000   
-0.5000    0.5000

d2 = lwtcoef('d',xDec,lsnew,2,2)

d2 =

   -0.7969   -0.7969    1.3281    1.3281   -1.0156   -1.0156    
0.9844    0.9844

% Check perfect reconstruction.
err = max(abs(x-a2-d2-d1))
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err =

  9.9920e-016

See Also ilwt, lwt
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8lwtcoef2Purpose Extract or reconstruct 2-D LWT wavelet coefficients

Syntax Y = lwtcoef2(TYPE,XDEC,LS,LEVEL,LEVEXT)
Y = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT)

Description Y = lwtcoef2(TYPE,XDEC,LS,LEVEL,LEVEXT) returns the coefficients or the 
reconstructed coefficients of level LEVEXT, extracted from XDEC, the LWT 
decomposition at level LEVEL obtained with the lifting scheme LS.

The valid values for TYPE are listed in this table.

Y = lwtcoef2(TYPE,XDEC,W,LEVEL,LEVEXT) returns the same output using W, 
which is the name of a lifted wavelet.

Remarks If  XDEC is obtained from an indexed image analysis or a truecolor image 
analysis, it is an m-by-n matrix or an m-by-n-by-3 array, respectively. 

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % Start from the Haar wavelet and get the
% corresponding lifting scheme.
lshaar = liftwave('haar');

TYPE Values Description

'a' Approximations

'h' Horizontal details

'v' Vertical details

'd' Diagonal details

'ca' Coefficients of approximations

'ch' Coefficients of horizontal details

'cv' Coefficients of vertical details

'cd' Coefficients of diagonal details
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% Add a primal ELS to the lifting scheme.
els = {'p',[-0.125 0.125],0};
lsnew = addlift(lshaar,els);

% Perform LWT at level 2 of a simple image.
x = reshape(1:16,4,4);
xDec = lwt2(x,lsnew,2)

xDec =

   27.4375    4.0000   17.0000    4.0000
    1.0000         0    1.0000         0
    4.2500    4.0000    0.0000    4.0000
    1.0000         0    1.0000         0

% Extract approximation coefficients of level 1.
ca1 = lwtcoef2('ca',xDec,lsnew,2,1)

ca1 =

    5.7500   22.7500
   10.0000   27.0000

% Reconstruct approximations and details.
a1 = lwtcoef2('a',xDec,lsnew,2,1)

a1 =

    2.8750    2.8750   11.3750   11.3750
    2.8750    2.8750   11.3750   11.3750
    5.0000    5.0000   13.5000   13.5000
    5.0000    5.0000   13.5000   13.5000

a2 = lwtcoef2('a',xDec,lsnew,2,2)

a2 =

    6.8594    6.8594    6.8594    6.8594
    6.8594    6.8594    6.8594    6.8594
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    6.8594    6.8594    6.8594    6.8594
    6.8594    6.8594    6.8594    6.8594

h1 = lwtcoef2('h',xDec,lsnew,2,1)

h1 =

   -0.3750   -0.3750   -0.3750   -0.3750
    0.6250    0.6250    0.6250    0.6250
   -0.5000   -0.5000   -0.5000   -0.5000
    0.5000    0.5000    0.5000    0.5000

v1 = lwtcoef2('v',xDec,lsnew,2,1)

v1 =

   -1.5000    2.5000   -2.0000    2.0000
   -1.5000    2.5000   -2.0000    2.0000
   -1.5000    2.5000   -2.0000    2.0000
   -1.5000    2.5000   -2.0000    2.0000

d1 = lwtcoef2('d',xDec,lsnew,2,1)

d1 =

     0     0     0     0
     0     0     0     0
     0     0     0     0
     0     0     0     0

h2 = lwtcoef2('h',xDec,lsnew,2,2)

h2 =

   -0.7969   -0.7969   -0.7969   -0.7969
   -0.7969   -0.7969   -0.7969   -0.7969
    1.3281    1.3281    1.3281    1.3281
    1.3281    1.3281    1.3281    1.3281

v2 = lwtcoef2('v',xDec,lsnew,2,2)
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v2 =

   -3.1875   -3.1875    5.3125    5.3125
   -3.1875   -3.1875    5.3125    5.3125
   -3.1875   -3.1875    5.3125    5.3125
   -3.1875   -3.1875    5.3125    5.3125

d2 = lwtcoef2('d',xDec,lsnew,2,2)

d2 =

  1.0e-015 *

    0.2498    0.2498   -0.4163   -0.4163
    0.2498    0.2498   -0.4163   -0.4163
   -0.4163   -0.4163    0.6939    0.6939
   -0.4163   -0.4163    0.6939    0.6939

% Check perfect reconstruction.
err = max(max(abs(x-a2-h2-v2-d2-h1-v1-d1)))

err =

  3.5527e-015

See Also ilwt2, lwt2
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8mdwtclusterPurpose Multisignals 1-D clustering

Syntax S = mdwtcluster(X)
S = mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,...)

Description S = mdwtcluster(X)  constructs clusters from a hierarchical cluster tree. The 
input matrix X is decomposed in row direction using the DWT function with the 
haar wavelet and the maximum allowed level.

S = mdwtcluster(X,'PropName1',PropVal1,'PropName2',PropVal2,...)
allows you to modify some properties. The valid choices for PropName are:

'dirDec' 'r' (row) or 'c' (column). Default value is 'r'.

'level' Level of the DWT decomposition. Default value is:   

level=fix(log2(size(X,d))) 

where d=1 or d=2, depending on the dirDec value.

'wname' Wavelet name used for DWT. Default value is 'haar'.

'dwtEXTM' DWT extension mode (see dwtmode).

'pdist' See Statistics Toolbox™ pdist function. Default value is 
'euclidean'.

'linkage' See Statistics Toolbox™ linkage function. Default 
value is 'ward'.



mdwtcluster

8-164

The output structure S is such that for each partition j:

Note  If maxclustVal is a vector, then IdxCLU is a multidimensional array 
such that IdxCLU(:,j,k) contains the cluster numbers obtained from the 
hierarchical cluster tree for k clusters.

Examples load elecsig10
lst2clu = {'s','ca1','ca3','ca6'};

'maxclust' Number of clusters. Default value is 6. The input 
variable can be a vector.

'lst2clu' Cell array that  contains the list of data to classify.
If N is the level of decomposition, the allowed name 
values for the cells are:

• 's' — Signal

• 'aj' — Approximation at level j

• 'dj' — Detail at level j

• 'caj' — Coefficients of approximation at level j

• 'cdj' — Coefficients of detail at level j

Default value is {'s';'ca1';...;'caN'}.

S.Idx(:,j) Contains the cluster numbers obtained from the 
hierarchical cluster tree (see cluster in the Statistics 
Toolbox™ software).

S.Incons(:,j) Contains the inconsistent values of each non-leaf node 
in the hierarchical cluster tree (see Statistics Toolbox™ 
software function inconsistent).

S.Corr(j) Contains the cophenetic correlation coefficients of the 
partition (see  Statistics Toolbox™ software function  
cophenet).
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% Compute the structure resulting from multisignal clustering
S = mdwtcluster(signals,'maxclust',4,'lst2clu',lst2clu)

S = 

    IdxCLU: [70x4 double]
    Incons: [69x4 double]
      Corr: [0.7920 0.7926 0.7947 0.7631]

% Retrieve indices of clusters
IdxCLU = S.IdxCLU;

% Plot the first cluster
plot(signals(IdxCLU(:,1)==1,:)','r');
hold on; 

% Plot the third clustering
plot(signals(IdxCLU(:,1)==3,:)','b')

% Check the equality of partitions
equalPART = isequal(IdxCLU(:,1),IdxCLU(:,3))
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equalPART =

     1

% So we can see that we obtain the same partitions using
% coefficents of approximation at level 3 instead of original
% signals. Much less information is then used.

See Also mdwtdec, wavedec
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8mdwtdecPurpose Multisignal 1-D wavelet decomposition

Syntax DEC = mdwtdec(DIRDEC,X,LEV,WNAME)
DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR)
DEC = mdwtdec(...,'mode',EXTMODE)

Description DEC = mdwtdec(DIRDEC,X,LEV,WNAME) returns the wavelet decomposition at 
level LEV of each row (if DIRDEC = 'r') or each column (if DIRDEC = 'c') of 
matrix  X, using the wavelet WNAME.

The output DEC is a structure with the following fields:

Coefficients cA and cD{k} (for k = 1 to LEV) are matrices and are stored in 
rows if DIRDEC = 'r' or in columns if DIRDEC = 'c'.

DEC = mdwtdec(DIRDEC,X,LEV,LoD,HiD,LoR,HiR) uses the four filters instead 
of the wavelet name.

DEC = mdwtdec(...,'mode',EXTMODE) computes the wavelet decomposition 
with the EXTMODE extension mode that you specify (see dwtmode for the valid 
extension modes).

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2')

'dirDec' Direction indicator: 'r' (row) or 'c' (column)

'level' Level of the DWT decomposition

'wname' Wavelet name

'dwtFilters' Structure with four fields LoD, HiD, LoR, and HiR

'dwtEXTM' DWT extension mode (see dwtmode)

'dwtShift' DWT shift parameter (0 or 1)

'dataSize' Size of X

'ca' Approximation coefficients at level LEV

'cd' Cell array of detail coefficients, from level 1 to level LEV
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dec = 
        dirDec: 'r'
         level: 2
         wname: 'db2'
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x26 double]
            cd: {[192x49 double]  [192x26 double]}

% Compute the associated filters of db2 wavelet.
[LoD,HiD,LoR,HiR] = wfilters('db2');

% Perform a decomposition at level 2 using filters.
decBIS = mdwtdec('r',X,2,LoD,HiD,LoR,HiR)

decBIS = 
        dirDec: 'r'
         level: 2
         wname: ''
    dwtFilters: [1x1 struct]
       dwtEXTM: 'sym'
      dwtShift: 0
      dataSize: [192 96]
            ca: [192x26 double]
            cd: {[192x49 double]  [192x26 double]}

References Daubechies, I. , Ten lectures on wavelets, CBMS-NSF conference series in 
applied mathematics. SIAM Ed., 1992.

Mallat, S., “A theory for multiresolution signal decomposition: the wavelet 
representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, 
no. 7, 1989, pp. 674–693.

Meyer, Y. , Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec, wavedec
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8mdwtrecPurpose Multisignal 1-D wavelet reconstruction

Syntax X = mdwtrec(DEC)
X = mdwtrec(DEC,IDXSIG) 
Y = mdwtrec(DEC,TYPE,LEV) 
A = mdwtrec(DEC,'a')
A = mdwtrec(DEC,'a',LEVDEC)
D = mdwtrec(DEC,'d')
CA = mdwtrec(DEC,'ca')
CA = mdwtrec(DEC,'ca',LEVDEC)
CD = mdwtrec(DEC,'cd',MODE)
CFS = mdwtrec(DEC,'cfs',MODE)
Y = mdwtrec(...,IDXSIG)

Description X = mdwtrec(DEC)  returns the original matrix of signals, starting from the 
wavelet decomposition structure DEC (see mdwtdec).

X = mdwtrec(DEC,IDXSIG) reconstructs the signals whose indices are given by 
the vector IDXSIG.

Y = mdwtrec(DEC,TYPE,LEV) extracts or reconstructs the detail or 
approximation coefficients at level LEV depending on the TYPE value. The 
maximum value for LEV is LEVDEC = DEC.level.

When TYPE is equal to:

• 'cd' or 'ca', coefficients of level LEV are extracted. 

• 'd' or 'a', coefficients of level LEV are reconstructed. 

• 'a' or 'ca', LEV must be such that 0 ≤ LEV ≤ LEVDEC.

• 'd' or 'cd', LEV must be such that 1 ≤ LEV ≤ LEVDEC.

A = mdwtrec(DEC,'a') is equivalent to A = mdwtrec(DEC,'a',LEVDEC).

D = mdwtrec(DEC,'d') returns a matrix containing the sum of all the details, 
so that X = A + D.

CA = mdwtrec(DEC,'ca') is equivalent to CA = mdwtrec(DEC,'ca',LEVDEC).
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CD = mdwtrec(DEC,'cd',MODE) returns a matrix containing all the detail 
coefficients.

CFS = mdwtrec(DEC,'cfs',MODE) returns a matrix containing all the 
coefficients.

For MODE = 'descend'the coefficients are concatened from level LEVDEC to 
level 1 and MODE = 'descend'  concatenates from level 1 to level LEVDEC). The 
default is MODE = 'descend'. The concatenation is made row-wise if 
DEC.dirDEC = 'r' or column-wise if DEC.dirDEC = 'c'.

Y = mdwtrec(...,IDXSIG) extracts or reconstructs the detail or the 
approximation coefficients for the signals whose indices are given by the vector 
IDXSIG.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Reconstruct the original matrix of signals, starting from 
% the wavelet decomposition structure dec.
XR = mdwtrec(dec);

% Compute the reconstruction error. 
errREC = max(max(abs(X-XR)))

errREC =
  2.1026e-010

% Reconstruct the original signal 31, the corresponding 
% approximation at level 2, details at levels 1 and 2. 
Y = mdwtrec(dec,31);
A2 = mdwtrec(dec,'a',2,31);
D2 = mdwtrec(dec,'d',2,31);
D1 = mdwtrec(dec,'d',1,31);

% Compute the reconstruction error for signal 31. 
errREC = max(abs(Y-A2-D2-D1))
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errREC =
  6.8390e-014

References Daubechies, I., Ten lectures on wavelets, CBMS-NSF conference series in 
applied mathematics. SIAM Ed., 1992.

Mallat, S., “A theory for multiresolution signal decomposition: the wavelet 
representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, 
no. 7, 1989, pp. 674–693.

Meyer, Y., Ondelettes et opérateurs, Tome 1, Hermann Ed. (English translation: 
Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec, waverec
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8mexihatPurpose Mexican hat wavelet

Syntax [PSI,X] = mexihat(LB,UB,N)

Description [PSI,X] = mexihat(LB,UB,N) returns values of the Mexican hat wavelet on an 
N point regular grid, X, in the interval [LB,UB]. 

Output arguments are the wavelet function PSI computed on the grid X.

This wavelet has [-5 5] as effective support.

This function is proportional to the second derivative function of the Gaussian 
probability density function.

Examples % Set effective support and grid parameters. 
lb = -5; ub = 5; n = 1000; 

% Compute and plot Mexican hat wavelet. 
[psi,x] = mexihat(lb,ub,n); 
plot(x,psi), title('Mexican hat wavelet')

See Also waveinfo
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8meyerPurpose Meyer wavelet

Syntax [PHI,PSI,T] = meyer(LB,UB,N)
[PHI,T] = meyer(LB,UB,N,'phi')
[PSI,T] = meyer(LB,UB,N,'psi')

Description [PHI,PSI,T] = meyer(LB,UB,N) returns Meyer scaling and wavelet functions 
evaluated on an N point regular grid in the interval [LB,UB]. 

N must be a power of two. 

Output arguments are the scaling function PHI and the wavelet function PSI 
computed on the grid T. These functions have [-8 8] as effective support. 

If only one function is required, a fourth argument is allowed:

[PHI,T] = meyer(LB,UB,N,'phi')
[PSI,T] = meyer(LB,UB,N,'psi')

When the fourth argument is used, but not equal to 'phi' or 'psi', outputs are 
the same as in the main option.

The Meyer wavelet and scaling function are defined in the frequency domain:

• Wavelet function
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• Scaling function

By changing the auxiliary function (see meyeraux for more information), you 
get a family of different wavelets. For the required properties of the auxiliary 
function ν, see “References” in Chapter 6, “Advanced Concepts,” of the User’s 
Guide.

Examples % Set effective support and grid parameters. 
lb = -8; ub = 8; n = 1024; 

% Compute and plot Meyer wavelet and scaling functions. 
[phi,psi,x] = meyer(lb,ub,n); 
subplot(211), plot(x,psi) 
title('Meyer wavelet') 
subplot(212), plot(x,phi) 
title('Meyer scaling function')
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Algorithm Starting from an explicit form of the Fourier transform  of φ, meyer computes 
the values of  on a regular grid, and then the values of φ are computed using 
instdfft, the inverse nonstandard discrete FFT.

The procedure for ψ is along the same lines. 

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics, SIAM Ed., pp. 117–119, 137, 152.

See Also meyeraux, wavefun, waveinfo

φ̂
φ̂
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8meyerauxPurpose Meyer wavelet auxiliary function

Syntax Y = meyeraux(X)

Description  Y = meyeraux(X) returns values of the auxiliary function used for Meyer 
wavelet generation evaluated at the elements of the vector or matrix X.

The function is

See Also meyer 

35x4 84x5
– 70x6 20x7

–+



morlet

8-177

8morletPurpose Morlet wavelet

Syntax [PSI,X] = morlet(LB,UB,N) 

Description [PSI,X] = morlet(LB,UB,N) returns values of the Morlet wavelet on an N point 
regular grid in the interval [LB,UB]. 

Output arguments are the wavelet function PSI computed on the grid X, and 
the grid X.

This wavelet has [-4 4] as effective support.

Examples % Set effective support and grid parameters. 
lb = -4; ub = 4; n = 1000; 
% Compute and plot Morlet wavelet. 
[psi,x] = morlet(lb,ub,n); 
plot(x,psi), title('Morlet wavelet')

See Also waveinfo 
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8mswcmpPurpose Multisignal 1-D compression using wavelets

Syntax [XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH)
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM)
[XC,THRESH] = mswcmp('cmpsig',...)
[DECCMP,THRESH] = mswcmp('cmpdec',...)
THRESH = mswcmp('thr',...)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswcmp(...,S_OR_H)
[...] = mswcmp(...,S_OR_H,KEEPAPP)
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG)

Description mswcmp computes thresholds and, depending on the selected option, performs 
compression of 1-D signals using wavelets. 

[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH) or
[XC,DECCMP,THRESH] = mswcmp('cmp',DEC,METH,PARAM)  returns a 
compressed (indicated by 'cmp' input)  version XC of the original multisignal 
matrix X, whose wavelet decomposition structure is DEC. The output XC is 
obtained by thresholding the wavelet coefficients: DECCMP, which is the wavelet 
decomposition associated with XC (see mdwtdec), and THRESH is the matrix of 
threshold values. The input METH is the name of the compression method and 
PARAM is the associated parameter, if required.

Valid compression methods METH are shown in the following tables. For  
methods that use an associated parameter, the range of allowable PARAM values 
is also shown. 

'rem_n0' Remove near 0

'bal_sn' Balance sparsity-norm

'sqrtbal_sn' Balance sparsity-norm (sqrt)

'scarse' Scarce

'scarsehi' Scarce high, 2.5 ≤ PARAM ≤ 10
'scarseme' Scarce medium, 1.5 ≤ PARAM ≤ 2.5
'scarselo' Scarce low, 1 ≤ PARAM ≤ 2 
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PARAM is a sparsity parameter, and it should be such that: 1 ≤ PARAM ≤ 10. For 
scarce method no control is done.

PARAM is a real number which represents the required performance:

0 ≤ PARAM ≤ 100. 

PARAM is a real positive number.

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

• - PARAM(i,j) is the threshold for the detail coefficients of level j for the ith 
signal (1 ≤ j ≤ NbLEV).

• - PARAM(i,NbLEV+1) is the threshold for the approximation coefficients for 
the ith signal (if KEEPAPP is 0).

Where NbSIG is the number of signals and NbLEV the number of levels of 
decomposition.

[XC,THRESH] = mswcmp('cmpsig',...) or
[DECCMP,THRESH] = mswcmp('cmpdec',...) or
THRESH = mswcmp('thr',...) Instead of the 'cmp' input OPTION, you can use 
'cmpsig', 'cmpdec' or 'thr'  to select other output arguments.  'thr' returns 
the computed thresholds, but compression is not performed. 

[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH)
[...] = mswcmp(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) The 
decomposition structure input argument DEC can be replaced by four 
arguments: DIRDEC, X, WNAME, and LEV.  Before performing a compression or 
computing thresholds, the multisignal matrix X is decomposed at level LEV 
using the wavelet WNAME, in the direction DIRDEC.

'L2_perf' Energy ratio

'N0_perf' Zero coefficients ratio

'glb_thr' Global threshold

'man_thr' Manual method
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[...] = mswcmp(...,S_OR_H)
[...] = mswcmp(...,S_OR_H,KEEPAPP)
[...] = mswcmp(...,S_OR_H,KEEPAPP,IDXSIG) Three more optional inputs 
may be used:

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh 
for more details). Default is 'h'.

• KEEPAPP (true or false) indicates whether to keep approximation 
coefficients (true) or not (false). Default is false.

• IDXSIG is a vector which contains the indices of the initial signals, or the 
string 'all'. Default is 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Compress the signals to obtain a percentage of zeros
% near 95% for the wavelet coefficients.
[XC,decCMP,THRESH] = mswcmp('cmp',dec,'N0_perf',95);
[Ecmp,PECcmp,PECFScmp] = wdecenergy(decCMP);

% Plot the original signals 1 and 31, and 
% the corresponding compressed signals.
figure;
plot(X([1 31],:)','r--','linewidth',2);   hold on
plot(XC([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XC solid line')
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See Also mdwtdec, mdwtrec, mswthresh, wthresh

References Birgé, L.; P. Massart (1997), “From Model Selection to Adaptive Estimation,” 
in D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55–88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image Compression Through 
Wavelet Transform Coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, 
pp. 719–746.

Donoho, D.L. (1993), “Progress in Wavelet Analysis and WVD: a Ten Minute 
Tour,” in Progress in Wavelet Analysis and Applications, Y. Meyer, S. Roques, 
pp. 109-128. Frontières Ed. 

Donoho, D.L.; I.M. Johnstone(1994), “Ideal Spatial Adaptation by Wavelet 
Shrinkage,” Biometrika, vol. 81, pp. 425–455. 

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet 
Shrinkage: Asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

Donoho, D.L.; I.M. Johnstone, “Ideal De-noising in an Orthonormal Basis 
Chosen from a Library of Bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by Soft-thresholding,” IEEE Trans. on Inf. 
Theory, 41, 3, pp. 613–627.
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8mswcmpscrPurpose Multisignal 1-D wavelet compression scores

Syntax [THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC)
[THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC,S_OR_H,KEEPAPP,IDXSIG)

Description [THR,L2SCR,NOSCR,IDXSORT] = mswcmpscr(DEC) computes four matrices: 
thresholds THR, compression scores L2SCR and NOSCR, and indices IDXSORT. The 
decomposition DEC corresponds to a matrix of wavelet coefficients CFS obtained 
by concatenation of detail and (optionally) approximation coefficients, where

CFS = [cd{DEC.level}, ... , cd{1}] or 
CFS = [ca, cd{DEC.level}, ... , cd{1}]

The concatenation is made rowwise if DEC.dirDec is equal to 'r' or 
columnwise if DEC.dirDec is equal to 'c' .

If NbSIG is the number of original signals and NbCFS the number of coefficients 
for each signal (all or only the detail coefficients), then CFS is an 
NbSIG-by-NbCFS matrix. Therefore, 

• THR, L2SCR, NOSCR are NbSIG-by-(NbCFS+1) matrices 

• IDXSORT is an NbSIG-by-NbCFS matrix

• THR(:,2:end) is equal to CFS sorted by row in ascending order with respect 
to the absolute value. 

• For each row, IDXSORT contains the order of coefficients and THR(:,1)=0.

For the ith signal:

• L2SCR(i,j) is the percentage of preserved energy (L2-norm), corresponding 
to a threshold equal to CFS(i,j-1) (2 ≤ j ≤ NbCFS), and L2SCR(:,1)=100.

• N0SCR(i,j) is the percentage of zeros corresponding to a threshold equal to 
CFS(i,j-1) (2 ≤ j ≤ NbCFS), and N0SCR(:,1)=0.
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Three more optional inputs may be used:

[...] = mswcmpscr(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for 
more details).

• KEEPAPP (true or false) indicates whether to keep approximation 
coefficients (true) or not (false).

• IDXSIG is a vector that contains the indices of the initial signals, or the string 
'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Compute compression performances for soft an hard thresholding.
[THR_S,L2SCR_S,N0SCR_S] = mswcmpscr(dec,'s');
[THR_H,L2SCR_H,N0SCR_H] = mswcmpscr(dec,'h');

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, 
no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec, mdwtrec, ddencmp, wdencmp
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8mswcmptpPurpose Multisignal 1-D compression thresholds and performances

Syntax [THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH,PARAM)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(...,S_OR_H)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(...,S_OR_H,KEEPAPP)
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)

Description [THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH) or 
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(DEC,METH,PARAM) computes the 
vectors THR_VAL, L2_Perf and N0_Perf obtained after a compression using the 
METH method and, if required, the PARAM parameter (see mswcmp for more 
information on METH and PARAM).

For the ith signal:

• THR_VAL(i) is the threshold applied to the wavelet coefficients. For a level 
dependent method, THR_VAL(i,j) is the threshold applied to the detail 
coefficients at level j.

• L2_Perf(i) is the percentage of energy (L2_norm) preserved after 
compression.

• N0_Perf(i) is the percentage of zeros obtained after compression.

You can use three more optional inputs:

[...] = mswcmptp(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh for 
more details).

• KEEPAPP (true or false) indicates whether to keep approximation 
coefficients (true) or not (false)

• IDXSIG is a vector which contains the indices of the initial signals, or the 
string 'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using wavelet db2.
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dec = mdwtdec('r',X,2,'db2');

% Compute compression thresholds and exact performances 
% obtained after a compression using the method 'N0_perf' and
% requiring a percentage of zeros near 95% for the wavelet
% coefficients.
[THR_VAL,L2_Perf,N0_Perf] = mswcmptp(dec,'N0_perf',95);

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, 
no. 7, pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also mdwtdec, mdwtrec, ddencmp, wdencmp



mswden

8-186

8mswdenPurpose Multisignal 1-D denoising using wavelets

Syntax [XD,DECDEN,THRESH] = mswden('den',DEC,METH)
[XD,DECDEN,THRESH] = mswden('den',DEC,METH,PARAM)
[XD,THRESH] = mswden('densig',...)
[DECDEN,THRESH] = mswden('dendec',...)
THRESH = mswden('thr',...)
[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM)
[...] = mswden(...,S_OR_H)
[...] = mswden(...,S_OR_H,KEEPAPP)
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

Description mswden computes thresholds and, depending on the selected option, performs 
denoising of 1-D signals using wavelets.

[XD,DECDEN,THRESH] = mswden('den',...) returns a denoised version XD of 
the original multisignal matrix X, whose wavelet decomposition structure is 
DEC. The output XD is obtained by thresholding the wavelet coefficients, DECDEN 
is the wavelet decomposition associated to XD (see mdwtdec), and THRESH  is the 
matrix of  threshold values. The input METH is the name of the denoising 
method and PARAM is the associated parameter, if required.

Valid denoising methods METH and associated parameters PARAM are:

For these methods PARAM defines the multiplicative threshold rescaling:

'rigrsure' Principle of Stein's Unbiased Risk

'heursure' Heuristic variant of the first option

'sqtwolog' Universal threshold sqrt(2*log(.))

'minimaxi' Minimax thresholding (see thselect)

'one' No rescaling

'sln' Rescaling using a single estimation of level noise based 
on first level coefficients

'mln' Rescaling using a level dependent estimation of level 
noise
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Penalization methods

PARAM is a sparsity parameter, and it should be such that: 1 ≤ PARAM ≤  10. For 
penal method no control is done.

Manual method

PARAM is an NbSIG-by-NbLEV matrix or NbSIG-by-(NbLEV+1) matrix such that:

• PARAM(i,j) is the threshold for the detail coefficients of level j for the ith 
signal (1 ≤ j ≤  NbLEV).

• PARAM(i,NbLEV+1) is the threshold for the approximation coefficients for the 
ith signal (if KEEPAPP is 0).

where NbSIG is the number of signals and NbLEV the number of levels of 
decomposition.

Instead of the 'den' input OPTION, you can use 'densig', 'dendec' or 'thr' 
OPTION to select output arguments:

[XD,THRESH] = mswden('densig',...) or 
[DECDEN,THRESH] = mswden('dendec',...)

THRESH = mswden('thr',...) returns the computed  thresholds, but 
denoising is not performed.

The decomposition structure input argument DEC can be replaced by four 
arguments: DIRDEC, X, WNAME and LEV.

[...] = mswden(OPTION,DIRDEC,X,WNAME,LEV,METH,PARAM) before 
performing a denoising or computing thresholds, the multisignal matrix X is 
decomposed at level LEV using the wavelet WNAME, in the direction DIRDEC.

'penal' Penal

'penalhi' Penal high, 2.5 ≤ PARAM ≤  10
'penalme' Penal medium,  1.5 ≤ PARAM ≤  2.5
'penallo' Penal low,  1 ≤ PARAM ≤  2

'man_thr' Manual method
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You can use three more optional inputs:

[...] = mswden(...,S_OR_H) or
[...] = mswden(...,S_OR_H,KEEPAPP) or
[...] = mswden(...,S_OR_H,KEEPAPP,IDXSIG)

• S_OR_H ('s' or 'h') stands for soft or hard thresholding (see mswthresh 
for more details).

• KEEPAPP (true or false) indicates whether to keep approximation 
coefficients (true) or not (false).

• IDXSIG is a vector that contains the indices of the initial signals, or the string 
'all'.

The defaults are, respectively, 'h', false and 'all'.

Examples % Load original 1D-multisignal.
load thinker

% Perform a decomposition at level 2 using the wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Denoise signals using the universal method
% of thresholding (sqtwolog) and the 'sln' 
% threshold rescaling (with a single estimation
% of level noise, based on first level coefficients).
[XD,decDEN,THRESH] = mswden('den',dec,'sqtwolog','sln');

% Plot the original signals 1 and 31, and the 
% corresponding compressed signals.
figure;
plot(X([1 31],:)','r--','linewidth',2);   hold on
plot(XD([1 31],:)','b','linewidth',2);
grid; set(gca,'Xlim',[1,96])
title('X dashed line and XD solid line')
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References Birgé, L.; P. Massart (1997), “From model selection to adaptive estimation,” in 
D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55–88.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression through 
wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719–
746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten minute 
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, 
pp. 109-128. Frontières Ed. 

Donoho, D.L.; I.M. Johnstone(1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol. 81, pp. 425–455. 

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet 
shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen 
from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf. 
Theory, 41, 3, pp. 613–627.

See Also mdwtdec, mdwtrec, mswthresh, wthresh
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8mswthreshPurpose Perform multisignal 1-D thresholding.

Syntax Y = mswthresh(X,SORH,T)
Y = mswthresh(X,SORH,T,'c')
Y = mswthresh(X,'s',T)
Y = mswthresh(X,'h',T)

Description Y = mswthresh(X,SORH,T) returns soft (if SORH='s') or hard (if SORH='h')  
T-thresholding of the input matrix X. T can be a single value, a matrix of the 
same size as X or a vector. In this last case, thresholding is performed rowwise 
and LT = length(T) must be such that size(X,1) ≤ LT.

Y = mswthresh(X,SORH,T,'c') performs a columnwise thresholding and  
size(X,2) ≤ LT.

Y = mswthresh(X,'s',T) returns Y = SIGN(X).(|X|-T)+, soft thresholding is 
shrinkage.

Y = mswthresh(X,'h',T) returns Y = X.1_(|X|>T), hard thresholding is 
cruder.

See Also mswden, mswcmp, wthresh, wden, wdencmp, wpdencmp
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8nodeascPurpose Node ascendants

Syntax A = nodeasc(T,N)
A = nodeasc(T,N,'deppos')

Description nodeasc is a tree-management utility. 

A = nodeasc(T,N) returns the indices of all the ascendants of the node N in the 
tree T where N can be the index node or the depth and position of the node. A is 
a column vector with A(1) = index of node N. 

A = nodeasc(T,N,'deppos') is a matrix, which contains the depths and 
positions of all ascendants. A(i,1) is the depth of the i-th ascendant and 
A(i,2) is the position of the i-th ascendant.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create binary tree of depth 3.
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

nodeasc(t,[2 2])
ans =

5 
2 
0

nodeasc(t,[2 2],'deppos')
ans =

2 2 
1 1 
0 0

See Also nodedesc, nodepar, wtreemgr 

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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8nodedescPurpose Node descendants

Syntax D = nodedesc(T,N)
D = nodedesc(T,N,'deppos')

Description nodedesc is a tree-management utility. 

D = nodedesc(T,N) returns the indices of all the descendants of the node N in 
the tree T where N can be the index node or the depth and position of node. D is 
a column vector with D(1) = index of node N.

D = nodedesc(T,N,'deppos') is a matrix that contains the depths and 
positions of all descendants. D(i,1) is the depth of the i-th descendant and 
D(i,2) is the position of the i-th descendant.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create binary tree of depth 3. 
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

% Node descendants. 
nodedesc(t,2)
ans =

2
5
6
13
14

nodedesc(t,2,'deppos')
ans =

1 1
2 2
2 3
3 6
3 7

nodedesc(t,[1 1],'deppos')
ans =

1 1
2 2
2 3
3 6
3 7

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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nodedesc(t,[1 1])
ans =

2
5
6
13
14

See Also nodeasc, nodepar, wtreemgr
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8nodejoinPurpose Recompose node

Syntax T = nodejoin(T,N)
T = nodejoin(T)

Description nodejoin is a tree-management utility. 

T = nodejoin(T,N) returns the modified tree T corresponding to a 
recomposition of the node N. 

The nodes are numbered from left to right and from top to bottom. The root 
index is 0. 

T = nodejoin(T) is equivalent to T = nodejoin(T,0).

Examples % Create binary tree of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Merge nodes of indices 4 and 5.
t = nodejoin(t,5);
t = nodejoin(t,4);

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(0)
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% Plot new tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

See Also nodesplt

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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8nodeparPurpose Node parent

Syntax F = nodepar(T,N)
F = nodepar(T,N,'deppos')

Description nodepar is a tree-management utility. 

F = nodepar(T,N) returns the indices of the “parent(s)” of the nodes N in the 
tree T where N can be a column vector containing the indices of nodes or a 
matrix that contains the depths and positions of nodes. In the last case, N(i,1) 
is the depth of the i-th node and N(i,2) is the position of the i-th node. 

F = nodepar(T,N,'deppos') is a matrix that contains the depths and positions 
of returned nodes. F(i,1) is the depth of the i-th node and F(i,2) is the 
position of the i-th node.

nodepar(T,0) or nodepar(T,[0,0]) returns -1.

nodepar(T,0,'deppos') or nodepar(T,[0,0],'deppos') returns [-1,0].

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create binary tree of depth 3. 
t = ntree(2,3); 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

% Nodes parent.
nodepar(t,[2 2],'deppos')

ans =
1 1

nodepar(t,[1;7;14])

ans =
0
3
6

See Also nodeasc, nodedesc, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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8nodespltPurpose Split (decompose) node

Syntax T = nodesplt(T,N) 

Description nodesplt is a tree-management utility. 

T = nodesplt(T,N) returns the modified tree T corresponding to the 
decomposition of the node N.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

% Split node of index 10. 
t = nodesplt(t,10);

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(0)
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% Plot new tree t. 
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

See Also nodejoin 

(1) (2)

(3) (4) (5) (6)

(7) (8) (9) (10) (11) (12) (13) (14)

(21) (22)

(0)
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8noleavesPurpose Determine nonterminal nodes

Syntax N = noleaves(T)
N = noleaves(T,'dp')

Description N = noleaves(T) returns the indices of nonterminal nodes of the tree T (i.e., 
nodes that are not leaves). N is a column vector.

The nodes are ordered from left to right as in tree T.   

N = noleaves(T,'dp') returns a matrix N, which contains the depths and 
positions of nonterminal nodes.

N(i,1) is the depth of the i-th nonterminal node and
N(i,2) is the position of the i-th nonterminal node.

Examples % Create initial tree.
ord = 2; 
t = ntree(ord,3);        % binary tree of depth 3.
t=nodejoin(t,5);
t=nodejoin(t,4);
plot(t)

% Change Node Label from Depth_Position to Index
% (see the plot function).

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)
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% List nonterminal nodes (index).
ntnodes_ind = noleaves(t)

ntnodes_ind =
     0
     1
     2
     3
     6

% List nonterminal nodes (Depth_Position).
ntnodes_depo = noleaves(t,'dp')

ntnodes_depo =
     0     0
     1     0
     1     1
     2     0
     2     3

See Also leaves 
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8ntnodePurpose Number of terminal nodes

Syntax NB = ntnode(T) 

Description ntnode is a tree-management utility. 

NB = ntnode(T) returns the number of terminal nodes in the tree T.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

Examples % Create binary tree (tree of order 2) of depth 3.
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Number of terminal nodes. 
ntnode(t)

ans =
8

See Also wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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8ntreePurpose NTREE constructor

Syntax T = ntree(ORD,D)
T = ntree
T = ntree(ORD)
T = ntree(ORD,D,S,U)
T = ntree('PropName1',PropValue1,'PropName2',PropValue2, ...)

Description T = ntree(ORD,D) returns an NTREE object, which is a complete tree of order 
ORD and depth D.

T = ntree is equivalent to T = ntree(2,0).

T = ntree(ORD) is equivalent to T = ntree(ORD,0).

With T = ntree(ORD,D,S) you can set a "split scheme" for nodes. The split 
scheme field S is a logical array of size ORD by 1.

The root of the tree can be split and it has ORD children. You can split the j-th 
child if S(j) = 1.

Each node that you can split has the same property as the root node.

With T = ntree(ORD,D,S,U) you can, in addition, set a userdata field.

Inputs can be given in another way:

T = ntree('order',ORD,'depth',D,'spsch',S,'ud',U). For “missing” 
inputs the defaults are ORD = 2 , D = 0 , S = ones([1:ORD]) , U = {}.

[T,NB] = ntree( ... ) returns also the number of terminal nodes (leaves) of T.

For more information on object fields, type help ntree/get.
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Class NTREE (Parent class: WTBO)

Fields

Examples % Create binary tree (tree of order 2) of depth 3.
t2 = ntree(2,3);

% Plot tree t2.
plot(t2)

% Create a quadtree (tree of order 4) of depth 2.
t4 = ntree(4,2,[1 1 0 1]);

% Plot tree t4.
plot(t4)

wtbo Parent object

order Tree order

depth Tree depth

spsch Split scheme for nodes

tn Column vector with terminal node indices

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)
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% Split and merge some nodes using the gui
% generated by plot (see the plot function).
% The figure becomes:

See Also wtbo

(0,0) 

(1,0) (1,1) (1,2) (1,3) 

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7) (2,12)(2,13)(2,14)(2,15)

(0,0) 

(1,0) (1,1) (1,2) (1,3) 

(2,0) (2,1) (2,2) (2,3) (2,12) (2,13) (2,14) (2,15)

(3,12) (3,13) (3,14) (3,15)
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8orthfiltPurpose Orthogonal wavelet filter set

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) 

Description [Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(W) computes the four filters associated 
with the scaling filter W corresponding to a wavelet:

For an orthogonal wavelet, in the multiresolution framework, we start with the 
scaling function φ and the wavelet function ψ. One of the fundamental relations 
is the twin-scale relation:

All the filters used in dwt and idwt are intimately related to the sequence 
. Clearly if φ is compactly supported, the sequence (wn) is finite and 

can be viewed as a FIR filter. The scaling filter W is

• A low-pass FIR filter

• Of length 2N

• Of sum 1

• Of norm

For example, for the db3 scaling filter,

load db3 
db3
db3 =

0.2352 0.5706 0.3252 -0.0955 -0.0604 0.0249

sum(db3)
ans =

Lo_D Decomposition low-pass filter

Hi_D Decomposition high-pass filter

Lo_R Reconstruction low-pass filter

Hi_R Reconstruction high-pass filter

1
2
---φ x

2
---⎝ ⎠
⎛ ⎞ wnφ x n–( )

n Z∈
∑=

wn( )
n Z∈

1
2

-------
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1.000
norm(db3)

ans =
0.7071

From filter W, we define four FIR filters, of length 2N and norm 1, organized as 
follows:

The four filters are computed using the following scheme:

where qmf is such that Hi_R and Lo_R are quadrature mirror filters 
(i.e., Hi_R(k) = (-1)k Lo_R(2N + 1 - k), for k = 1, 2,  , 2N), and where 
wrev flips the filter coefficients. So Hi_D and Lo_D are also quadrature mirror 
filters. The computation of these filters is performed using orthfilt.

Examples % Load scaling filter. 
load db8; w = db8; 
subplot(421); stem(w); 
title('Original scaling filter');

% Compute the four filters. 
[Lo_D,Hi_D,Lo_R,Hi_R] = orthfilt(w); 
subplot(423); stem(Lo_D); 
title('Decomposition low-pass filter'); 

Filters Low-Pass High-Pass

Decomposition Lo_D Hi_D

Reconstruction Lo_R Hi_R

Lo_R = 
W

norm(W)

Hi_R = qmf(Lo_R) Hi_D = wrev(Hi_R)

W

Lo_D = wrev(Lo_R)
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subplot(424); stem(Hi_D); 
title('Decomposition high-pass filter'); 
subplot(425); stem(Lo_R); 
title('Reconstruction low-pass filter'); 
subplot(426); stem(Hi_R); 
title('Reconstruction high-pass filter');

% Check for orthonormality. 
df = [Lo_D;Hi_D];
rf = [Lo_R;Hi_R];
id = df*df'

id =
1.0000         0
      0    1.0000

id = rf*rf'

id =
1.0000         0
      0    1.0000

% Check for orthogonality by dyadic translation, for example:
df = [Lo_D 0 0;Hi_D 0 0]; 
dft = [0 0 Lo_D; 0 0 Hi_D]; 
zer = df*dft'

zer =

1.0e-12 *
-0.1883 0.0000
-0.0000 -0.1883

% High- and low-frequency illustration. 
fftld = fft(Lo_D); ffthd = fft(Hi_D); 
freq = [1:length(Lo_D)]/length(Lo_D); 
subplot(427); plot(freq,abs(fftld)); 
title('Transfer modulus: low-pass');
subplot(428); plot(freq,abs(ffthd)); 
title('Transfer modulus: high-pass')
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% Editing some graphical properties,
% the following figure is generated.

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics, SIAM Ed. pp. 117–119, 137, 152.

See Also biorfilt, qmf, wfilters 
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8pat2cwavPurpose Build wavelet from pattern

Syntax [PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY)

Description [PSI,XVAL,NC] = pat2cwav(YPAT,METHOD,POLDEGREE,REGULARITY) computes 
an admissible wavelet for CWT (given by XVAL and PSI) adapted to the pattern 
defined by the vector YPAT, and of norm equal to 1.

The underlying x-values pattern is set to

xpat = linspace(0,1,length(YPAT))

The constant NC is such that NC*PSI approximates YPAT on the interval [0,1] 
by least squares fitting using

• a polynomial of degree POLDEGREE when METHOD is equal to 'polynomial'

• a projection on the space of functions orthogonal to constants when METHOD 
is equal to 'othconst'

The REGULARITY parameter defines the boundary constraints at the points 0 
and 1. Allowable values are 'continuous',  'differentiable', and  'none'.

When METHOD is equal to 'polynomial'

•   if REGULARITY is equal to 'continuous', POLDEGREE must be ≥ 3. 

•   if REGULARITY is equal to 'differentiable', POLDEGREE must be ≥ 5.

Examples The principle for designing a new wavelet for CWT is to approximate a given 
pattern using least squares optimization under constraints leading to an 
admissible wavelet well suited for the pattern detection using the continuous 
wavelet transform (see Misiti et al.).

% Example: Generate a new wavelet starting from a pattern.

% Load original pattern: a pseudo sine one.
load ptpssin1; 

% Variables X and Y contain the pattern.
whos

  Name          Size                   Bytes  Class
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  IntVAL        1x1                        8  double array
  X             1x256                   2048  double array
  Y             1x256                   2048  double array
  caption       1x35                      70  char array

Grand total is 548 elements using 4174 bytes

% This example is a demo-example, so we have the value of the
% integral of the pattern as well as the details about its
% construction in the caption variable.

IntVAL

IntVAL =

    0.1592

% The pattern defined on the interval [0,1] is of integral 0.1592. 
% So it is not a wavelet but it is a good candidate since it 
% oscillates like a wavelet.
plot(X,Y), title('Original Pattern')

% To synthesize a new wavelet adapted to the given pattern, let
% us use a least squares polynomial approximation of degree 6 with
% constraints of continuity at the beginning and the end of the
% pattern.

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
Original Pattern
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[psi,xval,nc] = pat2cwav(Y, 'polynomial',6, 'continuous') ;

% The new wavelet is given by xval and nc*psi.
plot(X,Y,'-',xval,nc*psi,'--'), 
title('Original Pattern and Adapted Wavelet (dashed line)')

% Note that the version of the wavelet is correctly 
% defined in order to be used in the CWT algorithm must be of
% square norm equal to 1. It is simply given by xval and psi.

References Misiti, M.; Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les ondelettes et leurs 
applications,” Hermes.

0 0.2 0.4 0.6 0.8 1
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0

0.5

1
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8plotPurpose Plot tree GUI

Syntax plot(T) 
plot(T,FIG) 
FIG = plot(T) 
NEWT = plot(T,'read',FIG) 
NEWT = plot(DUMMY,'read',FIG) 

Description plot is a graphical tree-management utility.

plot(T) plots the tree T.

The figure that contains the tree is a GUI tool. It lets you change the Node 
Label to Depth_Position or Index, and Node Action to Split-Merge or 
Visualize.

The default values are Depth_Position and Visualize.

You can click the nodes to execute the current Node Action.

plot(T,FIG) plots the tree T in the figure whose handle is FIG. This figure was 
already used to plot a tree, for example using the command

FIG = plot(T) 

After some split or merge actions, you can get the new tree using its parent 
figure handle. The following syntax lets you perform this functionality:

NEWT = plot(T,'read',FIG) 

In fact, the first argument is dummy. The most general syntax is

NEWT = plot(DUMMY,'read',FIG) 

where DUMMY is any object parented by an NTREE object. More generally, DUMMY 
can be any object constructor name returning an NTREE parented object. For 
example:

NEWT = plot(ntree,'read',FIG) 
NEWT = plot(dtree,'read',FIG) 
NEWT = plot(wptree,'read',FIG) 
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Examples % Create a wavelet packets tree (1-D)
load noisbloc
x = noisbloc;
t = wpdec(x,2,'db2');

% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index.
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% Click the node (3). You get the following figure.

% Change Node Action from Visualize to Split_Merge.
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% Merge the node (2) and split the node (3). 
% Change Node Action from Split_Merge to Visualize.
% Click the node (7). You obtain the following figure,
% which represents the wavelet decomposition at level 3.

% Create a wavelet packets tree (2-D)
load woman2
t = wpdec2(X,1,'sym4');
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% Plot tree t.
plot(t)

% Change Node Label from Depth_Position to Index.
% Click the node (1). You get the following figure.
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8qmfPurpose Quadrature mirror filter

Syntax Y = qmf(X,P)
Y = qmf(X)

Description Y = qmf(X,P) changes the signs of the even index entries of the reversed vector 
filter coefficients X if P is even. If P is odd the same holds for odd index entries. 
Y = qmf(X) is equivalent to Y = qmf(X,0). 

Let x be a finite energy signal. Two filters F0 and F1 are quadrature mirror 
filters (QMF) if, for any x,

where y0 is a decimated version of the signal x filtered with F0 so y0 is defined 
by x0 = F0(x) and y0(n) = x0(2n), and similarly, y1 is defined by x1 = F1(x) and 
y1(n) = x1(2n). This property ensures a perfect reconstruction of the associated 
two-channel filter banks scheme (See Strang-Nguyen p. 103).

For example, if F0 is a Daubechies scaling filter and F1 = qmf(F0), then the 
transfer functions F0(z) and F1(z) of the filters F0 and F1 satisfy the condition 
(see the example for db10):

Examples % Load scaling filter associated with an orthogonal wavelet. 
load db10; 
subplot(321); stem(db10); title('db10 low-pass filter');

% Compute the quadrature mirror filter. 
qmfdb10 = qmf(db10); 
subplot(322); stem(qmfdb10); title('QMF db10 filter');

% Check for frequency condition (necessary for orthogonality):
% abs(fft(filter))^2 + abs(fft(qmf(filter))^2 = 1 at each 
% frequency. 
m = fft(db10); 
mt = fft(qmfdb10); 
freq = [1:length(db10)]/length(db10); 

y0
2 y1

2
+ x 2

=

F0 z( ) 2 F1 z( ) 2
+ 1=
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subplot(323); plot(freq,abs(m)); 
title('Transfer modulus of db10')
subplot(324); plot(freq,abs(mt)); 
title('Transfer modulus of QMF db10')
subplot(325); plot(freq,abs(m).^2 + abs(mt).^2); 
title('Check QMF condition for db10 and QMF db10') 
xlabel(' abs(fft(db10))^2 + abs(fft(qmf(db10))^2 = 1')

% Editing some graphical properties,
% the following figure is generated.

% Check for orthonormality. 
df = [db10;qmfdb10]*sqrt(2); 
id = df*df'

id =
1.0000 0.0000 
0.0000 1.0000

References Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.
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8rbiowavfPurpose Reverse biorthogonal spline wavelet filters

Syntax [RF,DF]= rbiowavf(W)

Description [RF,DF] = rbiowavf(W) returns two scaling filters associated with the 
biorthogonal wavelet specified by the string W. 

W = 'rbioNr.Nd' where possible values for Nr and Nd are

The output arguments are filters.

• RF is the reconstruction filter.

• DF is the decomposition filter.

Examples % Set reverse biorthogonal spline wavelet name.
      wname = 'rbio2.2';
    
% Compute the two corresponding scaling filters,
% rf is the reconstruction scaling filter and
% df is the decomposition scaling filter.
[rf,df] = rbiowavf(wname)

rf =
   -0.1250    0.2500    0.7500    0.2500   -0.1250

df =
    0.2500    0.5000    0.2500

See Also biorfilt, waveinfo 

Nr = 1 Nd = 1 , 3 or 5 

Nr = 2 Nd = 2 , 4 , 6 or 8

Nr = 3 Nd = 1 , 3 , 5 , 7 or 9

Nr = 4 Nd = 4 

Nr = 5 Nd = 5 

Nr = 6 Nd = 8
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8readPurpose Read values of WPTREE

Syntax VARARGOUT = read(T,VARARGIN)

Description VARARGOUT = read(T,VARARGIN) is the most general syntax to read one or more 
property values from the fields of a WPTREE object .

The different ways to call the read function are

PropValue = read(T,'PropName') or

PropValue = read(T,'PropName','PropParam')

or any combination of the previous syntaxes:

[PropValue1,PropValue2, ] = 
read(T,'PropName1','PropParam1','PropName2','PropParam2', ) 

where 'PropParam' is optional.

The valid choices for 'PropName' and 'PropParam' are listed in the table below.

PropName PropParam 

'ent', 'ento' or 
'sizes' (see wptree)

Without 'PropParam' or with 
'PropParam' = Vector of node indices, PropValue 
contains the entropy (or optimal entropy, or size) 
of the tree nodes in ascending node index order.

'cfs' With 'PropParam' = One terminal node index. 
cfs = read(T,'cfs',NODE) is equivalent to 
cfs = read(T,'data',NODE) and returns the 
coefficients of the terminal node NODE.

'entName', 
'entPar' 'wavName' 
(see wptree) or 
'allcfs'

Without 'PropParam'. cfs = read(T,'allcfs') 
is equivalent to cfs = read(T,'data'). 
PropValue contains the desired information in 
ascending node index order of the tree nodes.
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Examples % Create a wavelet packet tree.
x = rand(1,512);
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);
plot(t);

% Click the node (3,0), (see the plot function).

'wfilters' (see 
wfilters)

Without 'PropParam' or with 'PropParam' =  
'd','r','l','h'.

'data' Without 'PropParam' or with 
'PropParam' = One terminal node index or 
'PropParam' = Column vector of terminal node 
indices.In this last case, PropValue is a cell array. 
Without 'PropParam', PropValue contains the 
coefficients of the tree nodes in ascending node 
index order.

PropName PropParam 

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

20 40 60
0.8

1

1.2

1.4

1.6

1.8

2
data for node: (7) or (3,0).
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% Read values.

sAll = read(t,'sizes');
sNod = read(t,'sizes',[0,4,5]);  
eAll = read(t,'ent');
eNod = read(t,'ent',[0,4,5]);  
dAll = read(t,'data');
dNod = read(t,'data',[4;5]);
[lo_D,hi_D,lo_R,hi_R] = read(t,'wfilters');
[lo_D,lo_R,hi_D,hi_R] = read(t,'wfilters','l','wfilters','h');
[ent,ento,cfs4,cfs5]  = read(t,'ent','ento','cfs',4,'cfs',5);

See Also disp, get, set, wptree, write
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8readtreePurpose Read wavelet packet decomposition tree from figure

Syntax T = readtree(F)

Description T = readtree(F) reads the wavelet packet decomposition tree from the figure 
whose handle is F.

For more information, see Chapter 5, “Using Wavelet Packets,” and Appendix 
B, “Object-Oriented Programming”.

Examples % Create a wavelet packet tree.
x   = sin(8*pi*[0:0.005:1]);
t   = wpdec(x,3,'db2');

% Display the generated tree in a Wavelet Packet 1-D GUI window.
fig = drawtree(t);

%-------------------------------------
% Use the GUI to split or merge Nodes.
%-------------------------------------
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t = readtree(fig);
plot(t)

% Click the node (3,0), (see the plot function).

See Also drawtree

(0,0)

(1,0) (1,1)

(2,0) (2,1)

(3,0) (3,1) (3,2) (3,3)

5 10 15 20 25
−3

−2

−1

0

1

2

3
data for node: (7) or (3,0).
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8scal2frqPurpose Scale to frequency

Syntax F = scal2frq(A,'wname',DELTA)

Description F = scal2frq(A,'wname',DELTA) returns the pseudo-frequencies 
corresponding to the scales given by A, the wavelet function 'wname' (see 
wavefun for more information) and the sampling period DELTA.

scal2frq(A,'wname') is equivalent to scal2frq(A,'wname',1).

One of the most frequently asked questions is, “How does one map a scale, for 
a given wavelet and a sampling period, to a kind of frequency?”

The answer can only be given in a broad sense and it’s better to speak about 
the pseudo-frequency corresponding to a scale.

A way to do it is to compute the center frequency, Fc, of the wavelet and to use 
the following relationship.

where

• a is a scale.

•  is the sampling period.

• Fc is the center frequency of a wavelet in Hz.

• Fa is the pseudo-frequency corresponding to the scale a, in Hz.

The idea is to associate with a given wavelet a purely periodic signal of 
frequency Fc. The frequency maximizing the fft of the wavelet modulus is Fc. 
The function centfrq can be used to compute the center frequency and it allows 
the plotting of the wavelet with the associated approximation based on the 
center frequency. The figure on the next page shows some examples generated 
using the centfrq function.

• Four real wavelets: Daubechies wavelets of order 2 and 7, coiflet of order 1, 
and the Gaussian derivative of order 4.

• Two complex wavelets: the complex Gaussian derivative of order 6 and a 
Shannon complex wavelet. 

Fa

Fc
a Δ⋅
-----------=

Δ
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Center Frequencies for Real and Complex Wavelets
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As you can see, the center frequency based approximation captures the main 
wavelet oscillations. So the center frequency is a convenient and simple 
characterization of the leading dominant frequency of the wavelet.

If we accept to associate the frequency Fc to the wavelet function then, when 
the wavelet is dilated by a factor a, this center frequency becomes Fc / a. Lastly, 
if the underlying sampling period is , it is natural to associate to the scale a 
the frequency

The function scal2frq computes this correspondence.

To illustrate the behavior of this procedure, let us consider the following simple 
test. We generate sine functions of sensible frequencies F0. For each function, 
we shall try to detect this frequency by a wavelet decomposition followed by a 
translation of scale to frequency. More precisely, after a discrete wavelet 
decomposition, we identify the scale a* corresponding to the maximum value of 
the energy of the coefficients. The translated frequency F* is then given by

scal2frq(a_star,'wname',sampling_period)

The F* values are close to the chosen F0. The plots at the end of example 2 
presents the periods instead of frequencies. If we change slightly the F0 values, 
the results remain satisfactory.

Examples Example 1
% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3'; 

% Define scales.
amax = 7; a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta); 

% Compute associated pseudo-periods.
per = 1./f;  

Δ

Fa

Fc
a Δ⋅
-----------=
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% Display information.
disp('    Scale    Frequency  Period')
disp([a' f' per'])

Scale    Frequency  Period

    2.0000    3.5294    0.2833
    4.0000    1.7647    0.5667
    8.0000    0.8824    1.1333
   16.0000    0.4412    2.2667
   32.0000    0.2206    4.5333
   64.0000    0.1103    9.0667
  128.0000    0.0551   18.1333

Example 2
% Set sampling period and wavelet name.
delta = 0.1; wname = 'coif3';

% Define scales. 
amax = 7;
a = 2.^[1:amax];

% Compute associated pseudo-frequencies.
f = scal2frq(a,wname,delta); 

% Compute associated pseudo-periods.
per = 1./f; 

% Plot pseudo-periods versus scales.
subplot(211), plot(a,per)
title(['Wavelet: ',wname, ', Sampling period: ',num2str(delta)])
xlabel('Scale')
ylabel('Computed pseudo-period')

% For each scale 2^i:
% - generate a sine function of period per(i);
% - perform a wavelet decomposition;
% - identify the highest energy level;
% - compute the detected pseudo-period.
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for i = 1:amax
% Generate sine function of period
% per(i) at sampling period delta.
t = 0:delta:100;
x = sin((t.*2*pi)/per(i));
% Decompose x at level 9.
[c,l] = wavedec(x,9,wname);

% Estimate standard deviation of detail coefficients.
stdc = wnoisest(c,l,[1:amax]);
% Compute identified period.
[y,jmax] = max(stdc);
idper(i) = per(jmax);

end

% Compare the detected and computed pseudo-periods.
subplot(212), plot(per,idper,'o',per,per)
title('Detected vs computed pseudo-period')
xlabel('Computed pseudo-period')
ylabel('Detected pseudo-period') 
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Example 3
This example demonstrates that, starting from the periodic function 
x(t) = cos(5t), the scal2frq function translates the scale corresponding to 
the maximum value of the CWT coefficients to a pseudo-frequency (0.795), 
which is near to the true frequency (5/(2*pi) =~ 0.796).

% Set wavelet name, interval and number of samples.
wname = 'db10';
A = -64; B = 64; P = 224;

% Compute the sampling period and the sampled function,
% and the true frequency.
delta = (B-A)/(P-1);
t = linspace(A,B,P);
omega = 5; x = cos(omega*t);
freq  = omega/(2*pi);

% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [0.25:0.25:3.75];
TAB_PF = scal2frq(scales,wname,delta);

% Compute the nearest pseudo-frequency
% and the corresponding scale.
[dummy,ind] = min(abs(TAB_PF-freq));
freq_APP  = TAB_PF(ind);
scale_APP = scales(ind);

% Continuous analysis and plot.
str1 = ['224 samples of x = cos(5t) on [-64,64] - ' ...
        'True frequency = 5/(2*pi) =~ ' num2str(freq,3)];
str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([TAB_PF',scales'],3)];
str4 = ['Pseudo-frequency = ' num2str(freq_APP,3)];
str5 = ['Corresponding scale = ' num2str(scale_APP,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',[str4,'  -  ' str5])
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clc ; disp(strvcat(' ',str1,' ',str2,str3,' ',str4,str5))

224 samples of x = cos(5t) on [-64,64] - 
True frequency = 5/(2*pi) =~ 0.796

Array of pseudo-frequencies and scales:                                    
 4.77      0.25                                                            
 2.38       0.5                                                            
 1.59      0.75                                                            
 1.19         1                                                            
0.954      1.25                                                            
0.795       1.5                                                            
0.681      1.75                                                            
0.596        2
. . . .
0.341       3.5                                                            
0.318      3.75                                                            
                                                                           
Pseudo-frequency = 0.795                                                          
Corresponding scale = 1.5                                  
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Example 4
This example demonstrates that, starting from the periodic function 
x(t) = 5*sin(5t)+3*sin(2t)+2*sin(t), the scal2frq function translates 
the scales corresponding to the maximum values of the CWT coefficients to 
pseudo-frequencies ([0.796 0.318 0.159]), which are near to the true 
frequencies ([5 2 1] / (2*pi) =~ [0.796 0.318 0.159]).

% Set wavelet name,interval and number of samples.
wname  = 'morl';
A = 0; B = 64; P = 500;

% Compute the sampling period and the sampled function,
% and the true frequencies.
t = linspace(A,B,P);
delta = (B-A)/(P-1);
tab_OMEGA = [5,2,1];
tab_FREQ  = tab_OMEGA/(2*pi);
tab_COEFS = [5,3,2];
x = zeros(1,P);
for k = 1:3;
    x = x+tab_COEFS(k)*sin(tab_OMEGA(k)*t);
end

% Set scales and use scal2frq to compute the array
% of pseudo-frequencies.
scales = [1:1:60];
tab_PF = scal2frq(scales,wname,delta);

% Compute the nearest pseudo-frequencies
% and the corresponding scales.
for k=1:3
  [dummy,ind] = min(abs(tab_PF-tab_FREQ(k)));
  PF_app(k) = tab_PF(ind);
  SC_app(k) = scales(ind);
end

% Continuous analysis and plot. 
str1 = strvcat( ...
   '500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]',...
   ['True frequencies (in Hz): [5 2 1]/(2*pi) =~ [' ...
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   num2str(tab_FREQ,3) ']' ]  ...
   );
str2 = ['Array of pseudo-frequencies and scales: '];
str3 = [num2str([tab_PF',scales'],3)];
str4 = ['Pseudo-frequencies   = ' num2str(PF_app,3)];
str5 = ['Corresponding scales = ' num2str(SC_app,3)];
figure; cwt(x,scales,wname,'plot'); ax = gca; colorbar
axTITL = get(ax,'title');
axXLAB = get(ax,'xlabel');
set(axTITL,'String',str1)
set(axXLAB,'String',strvcat(str4, str5))
clc; disp(strvcat(' ',str1,' ',str2,str3,' ',str4,str5))           
                                              
500 samples of x = 5*sin(5t)+3*sin(2t)+2*sin(t) on [0,64]      
True frequencies (in Hz): [5 2 1]/(2*pi) =~ [0.796   0.318   0.159]
                                                               
Array of pseudo-frequencies and scales:                        
 6.33         1                                                
 3.17         2                                                
 2.11         3                                                
 1.58         4                                                
 1.27         5                                                
 1.06         6                                                
0.905         7                                                
0.792         8                                                
0.704         9                                                
0.633        10                                                

. . . .

. . . .

0.122        52                                                
 0.12        53                                                
0.117        54                                                
0.115        55                                                
0.113        56                                                
0.111        57                                                
0.109        58                                                
0.107        59                                                
0.106        60                                                
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Pseudo-frequencies   = 0.792     0.317     0.158               
Corresponding scales = 8        20        40                   

 

References Abry, P. (1997), Ondelettes et turbulence. Multirésolutions, algorithmes de 
décomposition, invariance d’échelles, Diderot Editeur, Paris. 

See Also centfrq
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8setPurpose WPTREE field contents

Syntax T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...)

Description T = set(T,'FieldName1',FieldValue1,'FieldName2',FieldValue2, ...) 
sets the content of the specified fields for the WPTREE object T.

For the fields that are objects or structures, you can set the subfield contents, 
giving the name of these subfields as 'FieldName' values. 

The valid choices for 'FieldName' are

The fields of the wavelet information structure, 'wavInfo', are also valid for 
'FieldName':

The fields of the entropy information structure, 'entInfo', are also valid for 
'FieldName':

'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

'entInfo' Structure (entropy information)

'entName' Entropy name

'entPar' Entropy parameter
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Or fields of DTREE parent object:

Or fields of NTREE parent object:

Or fields of WTBO parent object:

Caution The set function should only be used to set the field 'ud'.

See Also disp, get, read, write

'ntree' NTREE parent object

'allNI' All nodes information

'terNI' Terminal nodes information

'wtbo' WTBO parent object

'order' Order of the tree

'depth' Depth of the tree

'spsch' Split scheme for nodes

'tn' Array of terminal nodes of the tree

'wtboInfo' Object information

'ud' Userdata field
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8shanwavfPurpose Complex Shannon wavelet

Syntax [PSI,X] = shanwavf(LB,UB,N,FB,FC)

Description [PSI,X] = shanwavf(LB,UB,N,FB,FC) returns values of the complex Shannon 
wavelet defined by a bandwidth parameter FB, a wavelet center frequency FC, 
and the expression

PSI(X) = (FB^0.5)*(sinc(FB*X).*exp(2*i*pi*FC*X))

on an N point regular grid in the interval [LB,UB].

FB and FC must be such that FC > 0 and FB > 0.

Output arguments are the wavelet function PSI computed on the grid X.

Examples % Set bandwidth and center frequency parameters.
fb = 1; fc = 1.5;

% Set effective support and grid parameters.
lb = -20; ub = 20; n = 1000;
         
% Compute complex Shannon wavelet shan1.5-1.
[psi,x] = shanwavf(lb,ub,n,fb,fc);

% Plot complex Shannon wavelet.
subplot(211)
plot(x,real(psi)),
title('Complex Shannon wavelet shan1.5-1')
xlabel('Real part'), grid
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subplot(212)
plot(x,imag(psi))
xlabel('Imaginary part'), grid

References Teolis, A. (1998), Computational signal processing with wavelets, Birkhäuser, 
p. 62.

See Also waveinfo 
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8swtPurpose Discrete stationary wavelet transform 1-D

Syntax SWC = swt(X,N,'wname')
SWC = swt(X,N,Lo_D,Hi_D)
[SWA,SWD] = swt(X,N,'wname')
[SWA,SWD] = swt(X,N,Lo_D,Hi_D)

Description swt performs a multilevel 1-D stationary wavelet decomposition using either a 
specific orthogonal wavelet ('wname', see wfilters for more information) or 
specific orthogonal wavelet decomposition filters.

SWC = swt(X,N,'wname') computes the stationary wavelet decomposition of 
the signal X at level N, using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information) and  

length(X) must be a multiple of 2N .

SWC = swt(X,N,Lo_D,Hi_D) computes the stationary wavelet decomposition as 
above, given these filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

The output matrix SWC contains the vectors of coefficients stored row-wise: 

For 1 ≤ i ≤ N, the output matrix SWC(i,:) contains the detail coefficients of 
level i and SWC(N+1,:) contains the approximation coefficients of level N.

[SWA,SWD] = swt( ) computes approximations, SWA, and details, SWD, 
stationary wavelet coefficients.

The vectors of coefficients are stored row-wise: 

For 1 ≤ i ≤ N, the output matrix SWA(i,:) contains the approximation 
coefficients of level i and the output matrix SWD(i,:) contains the detail 
coefficients of level i.

Note  swt is defined using dwt with periodic extension.
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Examples % Load original 1D signal.
load noisbloc; s = noisbloc;
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% Perform SWT decomposition at level 3 of s using db1.
[swa,swd] = swt(s,3,'db1');

% Plots of SWT coefficients of approximations and details
% at levels 3 to 1.

% Using some plotting commands,
% the following figure is generated.

Algorithm Given a signal s of length N, the first step of the SWT produces, starting from 
s, two sets of coefficients: approximation coefficients cA1 and detail coefficients 
cD1. These vectors are obtained by convolving s with the low-pass filter Lo_D 
for approximation, and with the high-pass filter Hi_D for detail.
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More precisely, the first step is
 

Note  cA1 and cD1 are of length N instead of N/2 as in the DWT case.

The next step splits the approximation coefficients cA1 in two parts using the 
same scheme, but with modified filters obtained by upsampling the filters used 
for the previous step and replacing s by cA1. Then, the SWT produces cA2 and 
cD2. More generally,

s

Lo_D

Hi_D

high-pass

approximation coefs

cA1

cD1

detail coefs

low-pass

where X Convolve with filter X

One-Dimensional SWT
Decomposition step

Fj

Gj

cAj

Initialization

Convolve with filter X

cA0 = s

where X

cAj+1

cDj+1

level j+1level j

Upsample2

Fj

Initialization F0 = Lo_D

Fj+1

Gj

Initialization G0 = Hi_D

Gj+1

where

2

2
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References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform and 
some statistical applications,” Lecture Notes in Statistics, 103, pp. 281–299.

Coifman, R.R.; Donoho, D.L. (1995), “Translation invariant de-noising,” 
Lecture Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant orthonormal 
wavelet representations,” IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964–1970.

See Also dwt, wavedec
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8swt2Purpose Discrete stationary wavelet transform 2-D

Syntax SWC = swt2(X,N,'wname')
[A,H,V,D] = swt2(X,N,'wname')
SWC = swt2(X,N,Lo_D,Hi_D)
[A,H,V,D] = swt2(X,N,Lo_D,Hi_D)

Description swt2 performs a multilevel 2-D stationary wavelet decomposition using either 
a specific orthogonal wavelet ('wname'—see wfilters for more information) or 
specific orthogonal wavelet decomposition filters.

SWC = swt2(X,N,'wname') or [A,H,V,D] = swt2(X,N,'wname') compute the 
stationary wavelet decomposition of the matrix X at level N, using 'wname'.

N must be a strictly positive integer (see wmaxlev for more information), and 2N 

must divide size(X,1) and  size(X,2).  

Outputs [A,H,V,D] are 3-D arrays, which contain the coefficients: 

• For 1 ≤ i ≤ N, the output matrix A(:,:,i) contains the coefficients of 
approximation of level i.

• The output matrices H(:,:,i), V(:,:,i) and D(:,:,i) contain the 
coefficients of details of level i (horizontal, vertical, and diagonal):

SWC = [H(:,:,1:N) ; V(:,:,1:N) ; D(:,:,1:N) ; A(:,:,N)]

SWC = swt2(X,N,Lo_D,Hi_D) or [A,H,V,D] = swt2(X,N,Lo_D,Hi_D), computes 
the stationary wavelet decomposition as in the previous syntax, given these 
filters as input:

• Lo_D is the decomposition low-pass filter.

• Hi_D is the decomposition high-pass filter.

Lo_D and Hi_D must be the same length.

Note  swt2 is defined using dwt with periodic extension.

Remarks When X represents an indexed image, X is an m-by-n matrix and  the output 
arrays SWC or cA,cH,cV, and cD are m-by-n-by-p arrays. 
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When X represents a truecolor image, it becomes an m-by-n-by-3 array. This 
array is an m-by-n-by-3 array, where each m-by-n matrix represents a red, green, 
or blue color plane concatenated along the third dimension. The output arrays 
SWC or cA,cH,cV, and cD are m-by-n-by-p-by-3 arrays.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % Load original image.
load nbarb1;

% Image coding.
nbcol = size(map,1);
cod_X = wcodemat(X,nbcol);

% Visualize the original image.
subplot(221)
image(cod_X)
title('Original image');
colormap(map)

% Perform SWT decomposition
% of X at level 3 using sym4.
[ca,chd,cvd,cdd] = swt2(X,3,'sym4');

% Visualize the decomposition.

for k = 1:3
    % Images coding for level k.
    cod_ca  = wcodemat(ca(:,:,k),nbcol);
    cod_chd = wcodemat(chd(:,:,k),nbcol);
    cod_cvd = wcodemat(cvd(:,:,k),nbcol);
    cod_cdd = wcodemat(cdd(:,:,k),nbcol);
    decl = [cod_ca,cod_chd;cod_cvd,cod_cdd];

    % Visualize the coefficients of the decomposition
    % at level k.
    subplot(2,2,k+1)
    image(decl)
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    title(['SWT dec.: approx. ', ...
   'and det. coefs (lev. ',num2str(k),')']);
    colormap(map)
end

% Editing some graphical properties,
% the following figure is generated.

Algorithm For images, an algorithm similar to the one-dimensional case is possible for 
two-dimensional wavelets and scaling functions obtained from 
one-dimensional ones by tensor product.

This kind of two-dimensional SWT leads to a decomposition of approximation 
coefficients at level j in four components: the approximation at level j+1, and 
the details in three orientations (horizontal, vertical, and diagonal).
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The following chart describes the basic decomposition step for images:

Two-Dimensional SWT

Decomposition step

rows

Fj

Gj

rows

cAj

columns

Initialization

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

cA0 = s for the decomposition initialization

where

X

columns

Gj

Fj

X

columns

columns

Gj

Fj

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

rows

columns

Upsample2

Fj

Initialization F0 = Lo_D

Fj+1

Gj

Initialization G0 = Hi_D

Gj+1

where

2

2

size(cAj) = size(cDj   )
(h)

= sNote = size(cDj   )
(v) = size(cDj   )

(d)

where    s = size of the analyzed image
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References Nason, G.P.; B.W. Silverman (1995), “The stationary wavelet transform and 
some statistical applications,” Lecture Notes in Statistics, 103, pp. 281–299.

Coifman, R.R.; Donoho, D.L. (1995), “Translation invariant de-noising,” 
Lecture Notes in Statistics, 103, pp. 125–150.

Pesquet, J.C.; H. Krim, H. Carfatan (1996), “Time-invariant orthonormal 
wavelet representations,” IEEE Trans. Sign. Proc., vol. 44, 8, pp. 1964–1970.

See Also dwt2, wavedec2
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8symauxPurpose Symlet wavelet filter computation

Syntax W = SYMAUX(N,SUMW)
W = SYMAUX(N)

Description Symlets are the “least asymmetric” Daubechies wavelets.

W = SYMAUX(N,SUMW) is the order N Symlet scaling filter such that 
SUM(W) = SUMW. Possible values for N are 1, 2, 3, …

Note  Instability may occur when N is too large.

W = SYMAUX(N) is equivalent to W = SYMAUX(N,1).

W = SYMAUX(N,0) is equivalent to W = SYMAUX(N,1).

Examples % Generate wdb4 the order 4 Daubechies scaling filter.
wdb4 = dbaux(4)

wdb4 =

  Columns 1 through 7 

    0.1629    0.5055    0.4461   -0.0198   -0.1323    0.0218    0.0233

  Column 8 

   -0.0075

% wdb4 is a solution of the equation: P = conv(wrev(w),w)*2,
% where P is the "Lagrange  trous" filter for N=4.
% wdb4 is a minimum phase solution of the previous equation,
% based on the roots of P (see dbaux).
P = conv(wrev(wdb4),wdb4)*2;
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% Generate wsym4 the order 4 symlet scaling filter.
% The Symlets are the "least asymmetric" Daubechies' 
% wavelets obtained from another choice between the roots of P.
wsym4 = symaux(4)

wsym4 =

  Columns 1 through 7 

    0.0228   -0.0089   -0.0702    0.2106    0.5683    0.3519   -0.0210

  Column 8 

   -0.0536

% Compute conv(wrev(wsym4),wsym4) * 2 and check that wsym4
% is another solution of the equation P = conv(wrev(w),w)*2.
Psym = conv(wrev(wsym4),wsym4)*2;
err = norm(P-Psym)

err =

  7.4988e-016

See Also symwavf, wfilters



symwavf

8-254

8symwavfPurpose Symlet wavelet filter

Syntax F = symwavf(W)

Description F = symwavf(W) returns the scaling filter associated with the symlet wavelet 
specified by the string W where W = 'symN'. Possible values for N are 2, 3, …, 45.

Examples % Compute the scaling filter corresponding to wavelet sym4. 
w = symwavf('sym4')

w =
Columns 1 through 7 

0.0228 -0.0089 -0.0702 0.2106 0.5683 0.3519 -0.0210
Column 8 

-0.0536

See Also symaux, waveinfo
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8thselectPurpose Threshold selection for de-noising

Syntax THR = thselect(X,TPTR) 

Description thselect is a one-dimensional de-noising oriented function. 

THR = thselect(X,TPTR) returns threshold X-adapted value using selection 
rule defined by string TPTR. 

Available selection rules are

• TPTR = 'rigrsure', adaptive threshold selection using principle of Stein’s 
Unbiased Risk Estimate.

• TPTR = 'heursure', heuristic variant of the first option.

• TPTR = 'sqtwolog', threshold is sqrt(2*log(length(X))).

• TPTR = 'minimaxi', minimax thresholding. 

Threshold selection rules are based on the underlying model y = f(t) + e where 
e is a white noise N(0,1). Dealing with unscaled or nonwhite noise can be 
handled using rescaling output threshold THR (see SCAL parameter in wden for 
more information). 

Available options are

• tptr = 'rigrsure' uses for the soft threshold estimator, a threshold 
selection rule based on Stein’s Unbiased Estimate of Risk (quadratic loss 
function). One gets an estimate of the risk for a particular threshold value t. 
Minimizing the risks in t gives a selection of the threshold value.

• tptr = 'sqtwolog' uses a fixed-form threshold yielding minimax 
performance multiplied by a small factor proportional to log(length(X)). 

• tptr = 'heursure' is a mixture of the two previous options. As a result, if 
the signal to noise ratio is very small, the SURE estimate is very noisy. If 
such a situation is detected, the fixed form threshold is used. 

• tptr = 'minimaxi' uses a fixed threshold chosen to yield minimax 
performance for mean square error against an ideal procedure. The minimax 
principle is used in statistics in order to design estimators. Since the 
de-noised signal can be assimilated to the estimator of the unknown 
regression function, the minimax estimator is the one that realizes the 
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minimum of the maximum mean square error obtained for the worst 
function in a given set.

Examples % The current extension mode is zero-padding (see dwtmode).

% Generate Gaussian white noise.
init = 2055415866; randn('seed',init); 
x = randn(1,1000);

% Find threshold for each selection rule. 
% Adaptive threshold using SURE. 
thr = thselect(x,'rigrsure') 
thr =

1.8065

% Fixed form threshold. 
thr = thselect(x,'sqtwolog') 
thr =

3.7169

% Heuristic variant of the first option. 
thr = thselect(x,'heursure') 
thr =

3.7169

% Minimax threshold. 
thr = thselect(x,'minimaxi') 
thr =

2.2163

References Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten minute 
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, 
pp. 109–128. Frontières Ed. 

Donoho, D.L., I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol 81, pp. 425–455.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf. 
Theory, 41, 3, pp. 613–627.

See Also wden
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8tnodesPurpose Determine terminal nodes

Syntax N = tnodes(T)
N = tnodes(T,'deppos')
[N,K] = tnodes(T)
[N,K] = tnodes(T,'deppos')

Description tnodes is a tree-management utility. 

N = tnodes(T) returns the indices of terminal nodes of the tree T. N is a column 
vector.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0.

N = tnodes(T,'deppos') returns a matrix N, which contains the depths and 
positions of terminal nodes. 

N(i,1) is the depth of the i-th terminal node. N(i,2) is the position of the i-th 
terminal node. 

For [N,K] = tnodes(T) or [N,K] = tnodes(T,'deppos'), M = N(K) are the 
indices reordered as in tree T, from left to right.

Examples % Create initial tree. 
ord = 2; 
t = ntree(ord,3);      % Binary tree of depth 3. 
t = nodejoin(t,5); 
t = nodejoin(t,4); 
plot(t)

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,6) (3,7)

(0,0)
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% Change Node Label from Depth_Position to Index
% (see the plot function).

% List terminal nodes (index). 
tnodes(t)

ans =
4
5
7
8
13
14

% List terminal nodes (Depth_Position). 
tnodes(t,'deppos')
ans =

2 1 
2 2 
3 0 
3 1 
3 6 
3 7

See Also leaves, noleaves, wtreemgr

(1) (2)

(3) (4) (5) (6)

(7) (8) (13) (14)

(0)



treedpth

8-259

8treedpthPurpose Tree depth

Syntax D = treedpth(T)

Description treedpth is a tree-management utility. 

D = treedpth(T) returns the depth D of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Tree depth. 
treedpth(t)

ans =
3

See Also wtreemgr 
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8treeordPurpose Tree order

Syntax ORD = treeord(T)

Description treeord is a tree-management utility. 

ORD = treeord(T) returns the order ORD of the tree T.

Examples % Create binary tree (tree of order 2) of depth 3. 
t = ntree(2,3);

% Plot tree t. 
plot(t)

% Tree order. 
treeord(t)

ans =
2

See Also wtreemgr

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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8upcoefPurpose Direct reconstruction from 1-D wavelet coefficients

Syntax Y = upcoef(O,X,'wname',N)
Y = upcoef(O,X,'wname',N,L)
Y = upcoef(O,X,Lo_R,Hi_R,N)
Y = upcoef(O,X,Lo_R,Hi_R,N,L)
Y = upcoef(O,X,'wname')
Y = upcoef(O,X,Lo_R,Hi_R)

Description upcoef is a one-dimensional wavelet analysis function. 

Y = upcoef(O,X,'wname',N) computes the N-step reconstructed coefficients of 
vector X. 

'wname' is a string containing the wavelet name. See wfilters for more 
information. 

N must be a strictly positive integer.

If O = 'a', approximation coefficients are reconstructed.

If O = 'd', detail coefficients are reconstructed. 

Y = upcoef(O,X,'wname',N,L) computes the N-step reconstructed coefficients 
of vector X and takes the length-L central portion of the result.

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef(O,X,Lo_R,Hi_R,N) or Y = upcoef(O,X,Lo_R,Hi_R,N,L), Lo_R 
is the reconstruction low-pass filter and Hi_R is the reconstruction high-pass 
filter. 

Y = upcoef(O,X,'wname') is equivalent to Y = upcoef(O,X,'wname',1).

Y = upcoef(O,X,Lo_R,Hi_R) is equivalent to Y = upcoef(O,X,Lo_R,Hi_R,1).

Examples % The current extension mode is zero-padding (see dwtmode).

% Approximation signals, obtained from a single coefficient 
% at levels 1 to 6. 
cfs = [1];  % Decomposition reduced a single coefficient. 
essup = 10; % Essential support of the scaling filter db6. 
figure(1) 
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for i=1:6 
% Reconstruct at the top level an approximation 
% which is equal to zero except at level i where only 
% one coefficient is equal to 1. 
rec = upcoef('a',cfs,'db6',i);

% essup is the essential support of the 
% reconstructed signal.

    % rec(j) is very small when j is ≥ essup. 
ax = subplot(6,1,i),h = plot(rec(1:essup)); 
set(ax,'xlim',[1 325]); 
essup = essup*2; 

end 
subplot(611) 
title(['Approximation signals, obtained from a single ' ... 

 'coefficient at levels 1 to 6'])

% Editing some graphical properties,
% the following figure is generated.
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% The same can be done for details. 
% Details signals, obtained from a single coefficient 
% at levels 1 to 6. 

cfs = [1]; 
mi = 12; ma = 30; % Essential support of 

% the wavelet filter db6. 
rec = upcoef('d',cfs,'db6',1); 
figure(2) 
subplot(611), plot(rec(3:12)) 
for i=2:6 

% Reconstruct at top level a single detail 
% coefficient at level i. 
rec = upcoef('d',cfs,'db6',i); 
subplot(6,1,i), plot(rec(mi*2^(i-2):ma*2^(i-2))) 

end 
subplot(611) 
title(['Detail signals obtained from a single ' ... 

'coefficient at levels 1 to 6'])
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% Editing some graphical properties,
% the following figure is generated.

Algorithm upcoef is equivalent to an N time repeated use of the inverse wavelet 
transform.

See Also idwt
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8upcoef2Purpose Direct reconstruction from 2-D wavelet coefficients

Syntax Y = upcoef2(O,X,'wname',N,S)
Y = upcoef2(O,X,Lo_R,Hi_R,N,S)
Y = upcoef2(O,X,'wname',N)
Y = upcoef2(O,X,Lo_R,Hi_R,N)
Y = upcoef2(O,X,'wname')
Y = upcoef2(O,X,Lo_R,Hi_R)

Description upcoef2 is a two-dimensional wavelet analysis function. 

Y = upcoef2(O,X,'wname',N,S) computes the N-step reconstructed 
coefficients of matrix X and takes the central part of size S. 'wname' is a string 
containing the name of the wavelet. See wfilters for more information. 

If O = 'a', approximation coefficients are reconstructed; otherwise if O = 'h' 
('v' or 'd', respectively), horizontal (vertical or diagonal, respectively) detail 
coefficients are reconstructed. N must be a strictly positive integer. 

Instead of giving the wavelet name, you can give the filters.

For Y = upcoef2(O,X,Lo_R,Hi_R,N,S), Lo_R is the reconstruction low-pass 
filter and Hi_R is the reconstruction high-pass filter. 

Y = upcoef2(O,X,'wname',N) or Y = upcoef2(O,X,Lo_R,Hi_R,N) returns the 
computed result without any truncation. 

Y = upcoef2(O,X,'wname') is equivalent to Y = upcoef2(O,X,'wname',1).

Y = upcoef2(O,X,Lo_R,Hi_R) is equivalent to 
Y = upcoef2(O,X,Lo_R,Hi_R,1).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db4. 
[c,s] = wavedec2(X,2,'db4');
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% Reconstruct approximation and details 
% at level 1, from coefficients. 
% This can be done using wrcoef2, or 
% equivalently using: 
% 
% Step 1: Extract coefficients from the 
% decomposition structure [c,s]. 
% 
% Step 2: Reconstruct using upcoef2. 

siz = s(size(s,1),:); 

ca1 = appcoef2(c,s,'db4',1); 
a1 = upcoef2('a',ca1,'db4',1,siz);

chd1 = detcoef2('h',c,s,1); 
hd1 = upcoef2('h',chd1,'db4',1,siz); 

cvd1 = detcoef2('v',c,s,1); 
vd1 = upcoef2('v',cvd1,'db4',1,siz);

cdd1 = detcoef2('d',c,s,1); 
dd1 = upcoef2('d',cdd1,'db4',1,siz);

Algorithm See upcoef.

See Also idwt2 
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8upwlevPurpose Single-level reconstruction of 1-D wavelet decomposition

Syntax [NC,NL,cA] = upwlev(C,L,'wname')
[NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R)

Description upwlev is a one-dimensional wavelet analysis function.

[NC,NL,cA] = upwlev(C,L,'wname') performs the single-level reconstruction 
of the wavelet decomposition structure [C,L] giving the new one [NC,NL], and 
extracts the last approximation coefficients vector cA.

[C,L] is a decomposition at level n = length(L)-2, so [NC,NL] is the same 
decomposition at level n-1 and cA is the approximation coefficients vector at 
level n. 

'wname' is a string containing the wavelet name, C is the original wavelet 
decomposition vector, and L the corresponding bookkeeping vector (for detailed 
storage information, see wavedec). 

Instead of giving the wavelet name, you can give the filters.

For [NC,NL,cA] = upwlev(C,L,Lo_R,Hi_R), Lo_R is the reconstruction 
low-pass filter and Hi_R is the reconstruction high-pass filter.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal.
load sumsin; s = sumsin; 

% Perform decomposition at level 3 of s using db1. 
[c,l] = wavedec(s,3,'db1'); 
subplot(311); plot(s); 
title('Original signal s.'); 
subplot(312); plot(c); 
title('Wavelet decomposition structure, level 3') 
xlabel(['Coefs for approx. at level 3 ' ... 
      'and for det. at levels 3, 2 and 1'])
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% One step reconstruction of the wavelet decomposition 
% structure at level 3 [c,l], so the new structure [nc,nl] 
% is the wavelet decomposition structure at level 2. 
[nc,nl] = upwlev(c,l,'db1'); 
subplot(313); plot(nc); 
title('Wavelet decomposition structure, level 2') 
xlabel(['Coefs for approx. at level 2 ' ... 

  'and for det. at levels 2 and 1'])

% Editing some graphical properties,
% the following figure is generated.

See Also idwt, upcoef, wavedec 
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8upwlev2Purpose Single-level reconstruction of 2-D wavelet decomposition

Syntax [NC,NS,cA] = upwlev2(C,S,'wname')
[NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R)

Description upwlev2 is a two-dimensional wavelet analysis function. 

[NC,NS,cA] = upwlev2(C,S,'wname') performs the single-level reconstruction 
of wavelet decomposition structure [C,S] giving the new one [NC,NS], and 
extracts the last approximation coefficients matrix cA. 

[C,S] is a decomposition at level n = size(S,1)-2, so [NC,NS] is the same 
decomposition at level n-1 and cA is the approximation matrix at level n.

'wname' is a string containing the wavelet name, C is the original wavelet 
decomposition vector, and S the corresponding bookkeeping matrix (for 
detailed storage information, see wavedec2). 

Instead of giving the wavelet name, you can give the filters.

For [NC,NS,cA] = upwlev2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction 
low-pass filter and Hi_R is the reconstruction high-pass filter.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db1. 
[c,s] = wavedec2(X,2,'db1');
sc = size(c)

sc =
1 65536

val_s = s 
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val_s =
64 64 
64 64 
128 128 
256 256

% One step reconstruction of wavelet 
% decomposition structure [c,s]. 
[nc,ns] = upwlev2(c,s,'db1');
snc = size(nc)

snc =
1 65536

val_ns = ns

val_ns =
128 128 
128 128 
256 256

See Also idwt2, upcoef2, wavedec2 
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8wave2lpPurpose Laurent polynomials associated with wavelet

Syntax [Hs,Gs,Ha,Ga] = wave2lp(W)

Description [Hs,Gs,Ha,Ga] = wave2lp(W) returns the four Laurent polynomials associated 
with the wavelet W (see liftwave). 

The pairs (Hs,Gs) and (Ha,Ga) are the synthesis and the analysis pair 
respectively.

The H-polynomials (G-polynomials) are low-pass (high-pass) polynomials. 

For an orthogonal wavelet, Hs = Ha and Gs = Ga.

Examples % Get Laurent polynomials associated to the "lazy" wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('lazy')
 
Hs(z) = 1
 
Gs(z) = z^(-1)
 
Ha(z) = 1
 
Ga(z) = z^(-1)

% Get Laurent polynomials associated to the db1 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('db1')
 
Hs(z) = + 0.7071 + 0.7071*z^(-1)
 
Gs(z) = - 0.7071 + 0.7071*z^(-1)
 
Ha(z) = + 0.7071 + 0.7071*z^(-1)
 
Ga(z) = - 0.7071 + 0.7071*z^(-1)

% Get Laurent polynomials associated to the bior1.3 wavelet.
[Hs,Gs,Ha,Ga] = wave2lp('bior1.3')
 
Hs(z) = + 0.7071 + 0.7071*z^(-1)
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Gs(z) = ...                                                                         
    + 0.08839*z^(+2) + 0.08839*z^(+1) - 0.7071 + 0.7071*z^(-1) - 
0.08839*z^(-2)  ...
    - 0.08839*z^(-3)                                                                
 
Ha(z) = ...                                                                         
    - 0.08839*z^(+2) + 0.08839*z^(+1) + 0.7071 + 0.7071*z^(-1) + 
0.08839*z^(-2)  ...
    - 0.08839*z^(-3)                                                                
 
Ga(z) = - 0.7071 + 0.7071*z^(-1)

See Also laurpoly
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8wavedecPurpose Multilevel 1-D wavelet decomposition

Syntax [C,L] = wavedec(X,N,'wname')
[C,L] = wavedec(X,N,Lo_D,Hi_D)

Description wavedec performs a multilevel one-dimensional wavelet analysis using either 
a specific wavelet ('wname') or a specific wavelet decomposition filters (Lo_D 
and Hi_D, see wfilters). 

[C,L] = wavedec(X,N,'wname') returns the wavelet decomposition of the 
signal X at level N, using 'wname'. N must be a strictly positive integer (see 
wmaxlev for more information). The output decomposition structure contains 
the wavelet decomposition vector C and the bookkeeping vector L. The 
structure is organized as in this level-3 decomposition example: 

[C,L] = wavedec(X,N,Lo_D,Hi_D) returns the decomposition structure as 
above, given the low- and high-pass decomposition filters you specify.

X

cA1 cD1

cA2 cD2

cA3 cD3

C:

L:

Decomposition:

cD1cD2cA3 cD3

cA3
length of

cD3
length of

cD2

length of length of
X

length 
ofcD1
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Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal. 
load sumsin; s = sumsin; 
% Perform decomposition at level 3 of s using db1. 
[c,l] = wavedec(s,3,'db1');

% Using some plotting commands,
% the following figure is generated.

Algorithm Given a signal s of length N, the DWT consists of log2 N stages at most. The 
first step produces, starting from s, two sets of coefficients: approximation 
coefficients CA1, and detail coefficients CD1. These vectors are obtained by 
convolving s with the low-pass filter Lo_D for approximation, and with the 
high-pass filter Hi_D for detail, followed by dyadic decimation (downsampling).

More precisely, the first step is
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The length of each filter is equal to 2N. If n = length(s), the signals F and G are 
of length n + 2N - 1 and the coefficients cA1 and cD1 are of length

The next step splits the approximation coefficients cA1 in two parts using the 
same scheme, replacing s by cA1, and producing cA2 and cD2, and so on
.

The wavelet decomposition of the signal s analyzed at level j has the following 
structure: [cAj, cDj, ..., cD1].

s

Lo_D

Hi_D

high-pass

F

G

downsample

downsample approximation coefs

cA1

cD1

2

detail coefs

low-pass

2

where

2

X Convolve with filter X

Keep the even indexed elements
(We call this operation downsampling.)

floor
n 1–

2
-------------⎝ ⎠
⎛ ⎞ N+

One-Dimensional DWT
Decomposition step

Lo_D

Hi_D

cAj

2

Initialization

Convolve with filter X

Downsample

cA0 = s

where

2

2

X

cAj+1

cDj+1

level j+1level j
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This structure contains, for J = 3, the terminal nodes of the following tree:

References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no. 
7, pp 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also dwt, waveinfo, waverec, wfilters, wmaxlev

s

cD1

cD2

cD3cA3

cA1

cA2
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8wavedec2Purpose Multilevel 2-D wavelet decomposition

Syntax [C,S] = wavedec2(X,N,'wname')
[C,S] = wavedec2(X,N,Lo_D,Hi_D)

Description wavedec2 is a two-dimensional wavelet analysis function. 

[C,S] = wavedec2(X,N,'wname') returns the wavelet decomposition of the 
matrix X at level N, using the wavelet named in string 'wname' (see wfilters  
for more information).

Outputs are the decomposition vector C and the corresponding bookkeeping 
matrix S.

N must be a strictly positive integer (see wmaxlev for more information). 

Instead of giving the wavelet name, you can give the filters. 

For [C,S] = wavedec2(X,N,Lo_D,Hi_D), Lo_D is the decomposition low-pass 
filter and Hi_D is the decomposition high-pass filter. 

Vector C is organized as

C = [ A(N) | H(N) | V(N) | D(N) | ... 

H(N-1) | V(N-1) | D(N-1) | ... | H(1) | V(1) | D(1) ].

where A, H, V, D, are row vectors such that

• A = approximation coefficients

• H = horizontal detail coefficients

• V = vertical detail coefficients

• D = diagonal detail coefficients

• Each vector is the vector column-wise storage of a matrix.

Matrix S is such that

• S(1,:) = size of approximation coefficients(N).

• S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and 
S(N+2,:) = size(X).
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Remarks When X represents an indexed image, X, as well as the output arrays cA,cH,cV, 
and cD are m-by-n matrices. When X represents a truecolor image, it is an 
m-by-n-by-3 array, where each m-by-n matrix represents a red, green, or blue 
color plane concatenated along the third dimension. The size of  vector C and 
the size of  matrix S depend on the type of analyzed image.

For a truecolor image, the decomposition vector C and the corresponding 
bookkeeping matrix S can be represented as follows.

For more information on image formats, see the image and imfinfo reference 
pages.

cAn

C (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

..
.

32 32

256 256

S (n+2-by-2)

512 512  X

cAn

C (3n+1 sections)

cHn cVn cDn cHn–1 cVn–1 cDn–1 cH1 cV1 cD1...

32 32

.
.
.

S (n+2-by-3)

 X

3

32 32 3

256 256 3

512 512 3
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Examples % The current extension mode is zero-padding (see dwtmode).

% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using db1. 
[c,s] = wavedec2(X,2,'db1');

% Decomposition structure organization. 
sizex = size(X)

sizex =
256 256

sizec = size(c)

sizec =
1 65536
val_s = s 

val_s =
64 64 
64 64 
128 128 
256 256

Algorithm For images, an algorithm similar to the one-dimensional case is possible for 
two-dimensional wavelets and scaling functions obtained from 
one-dimensional ones by tensor product.

This kind of two-dimensional DWT leads to a decomposition of approximation 
coefficients at level j in four components: the approximation at level j+1, and 
the details in three orientations (horizontal, vertical, and diagonal).
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The following chart describes the basic decomposition step for images:

So, for J=2, the two-dimensional wavelet tree has the form

Two-Dimensional DWT

Decomposition step

rows

Lo_D

Hi_D

rows

cAj

2 1

columns

Initialization

Downsample columns: keep the even indexed columns

Downsample rows: keep the even indexed rows

Convolve with filter X the rows of the entry

Convolve with filter X the columns of the entry

cA0 = s for the decomposition initialization

where

2 1

21

21

21

21

2 1

21

X

columns

Hi_D

Lo_D

X

columns

columns

Hi_D

Lo_D

cAj+1

cDj+1

cDj+1

cDj+1

(h)

(v)

(d)

horizontal

vertical

diagonal

rows

columns
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 
pp. 674–693.

Meyer, Y. (1990), Ondelettes et opérateurs, Tome 1, Hermann Ed. (English 
translation: Wavelets and operators, Cambridge Univ. Press. 1993.)

See Also dwt, waveinfo, waverec2, wfilters, wmaxlev
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8wavedemoPurpose Wavelet Toolbox™ software demos

Syntax wavedemo

Description wavedemo brings up a GUI that allows you to choose between several Wavelet 
Toolbox demos.
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8wavefunPurpose Wavelet and scaling functions

Syntax [PHI,PSI,XVAL] = wavefun('wname',ITER)
[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER)
[PSI,XVAL] = wavefun('wname',ITER)
[...] = wavefun('wname',A,B)

Description The function wavefun returns approximations of the wavelet function 'wname' 
and the associated scaling function, if it exists. The positive integer ITER 
determines the number of iterations computed; thus, the refinement of the 
approximations.

For an orthogonal wavelet:

[PHI,PSI,XVAL] = wavefun('wname',ITER) returns the scaling and wavelet 
functions on the points grid XVAL. 

For a biorthogonal wavelet:

[PHI1,PSI1,PHI2,PSI2,XVAL] = wavefun('wname',ITER) returns the scaling 
and wavelet functions both for decomposition (PHI1,PSI1) and for 
reconstruction (PHI2,PSI2). 

For a Meyer wavelet:

[PHI,PSI,XVAL] = wavefun('wname',ITER)

For a wavelet without scaling function (e.g., Morlet, Mexican Hat, Gaussian 
derivatives wavelets or complex wavelets): 

[PSI,XVAL] = wavefun('wname',ITER)

[...] = wavefun('wname',A,B), where A and B are positive integers, is 
equivalent to [...] = wavefun('wname',max(A,B)), and draws plots. 

When A is set equal to the special value 0,

• [...] = wavefun('wname',0) is equivalent to 

• [...] = wavefun('wname',8,0).

• [...] = wavefun('wname') is equivalent to 

• [...] = wavefun('wname',8).

The output arguments are optional.
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Examples On the following graph, 10 piecewise linear approximations of the sym4 wavelet 
obtained after each iteration of the cascade algorithm are shown.

% Set number of iterations and wavelet name. 
iter = 10;
wav = 'sym4';

% Compute approximations of the wavelet function using the
% cascade algorithm. 
for i = 1:iter 

[phi,psi,xval] = wavefun(wav,i); 
plot(xval,psi); 
hold on 

end
title(['Approximations of the wavelet ',wav, ... 

' for 1 to ',num2str(iter),' iterations']); 
hold off

Algorithm For compactly supported wavelets defined by filters, in general no closed form 
analytic formula exists.
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The algorithm used is the cascade algorithm. It uses the single-level inverse 
wavelet transform repeatedly.

Let us begin with the scaling function φ.

Since φ is also equal to , (according to the notation used in Chapter 6, 
“Advanced Concepts”), this function is characterized by the following 
coefficients in the orthogonal framework:

• <φ, > = 1 only if n = 0 and equal to 0 otherwise

• <φ, > = 0 for positive j, and all k.

This expansion can be viewed as a wavelet decomposition structure. Detail 
coefficients are all zeros and approximation coefficients are all zeros except one 
equal to 1. 

Then we use the reconstruction algorithm to approximate the function  over 
a dyadic grid, according to the following result:

For any dyadic rational of the form x = n2-j in which the function is continuous 
and where j is sufficiently large, we have pointwise convergence and

where C is a constant, and α is a positive constant depending on the wavelet 
regularity.

Then using a good approximation of φ on dyadic rationals, we can use piecewise 
constant or piecewise linear interpolations η on dyadic intervals, for which 
uniform convergence occurs with similar exponential rate:

So using a J-step reconstruction scheme, we obtain an approximation that 
converges exponentially towards φ when J goes to infinity.

Approximations are computed over a grid of dyadic rationals covering the 
support of the function to be approximated.

Since a scaled version of the wavelet function ψ can also be expanded on the 
, the same scheme can be used, after a single-level reconstruction 

φ0 0,

φ0 n,

ψ j– k,

φ

φ x( ) 2

j
2
---

– φ φ,
j– n2j J–,

〈 〉 C.2 jα–≤

φ η– ∞ C.2 jα–≤

φ 1 n,–( )n
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starting with the appropriate wavelet decomposition structure. Approximation 
coefficients are all zeros and detail coefficients are all zeros except one equal 
to 1. 

For biorthogonal wavelets, the same ideas can be applied on each of the two 
multiresolution schemes in duality.

Note  This algorithm may diverge if the function to be approximated is not 
continuous on dyadic rationals.

References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202–213.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.

See Also intwave, waveinfo, wfilters
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8wavefun2Purpose Wavelet and scaling functions 2-D

Syntax [S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER)
[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot')
[S,W1,W2,W3,XYVAL] = wavefun2('wname',A,B)

Description For an orthogonal wavelet 'wname',  wavefun2 returns the scaling function and 
the three wavelet functions resulting from the tensor products of the 
one-dimensional scaling and wavelet functions. 

If [PHI,PSI,XVAL] = wavefun('wname',ITER), the scaling function S is the 
tensor product of PHI and PSI.

The wavelet functions W1, W2, and W3 are the tensor products (PHI,PSI), 
(PSI,PHI), and (PSI,PSI), respectively.

The two-dimensional variable XYVAL is a 2ITER x 2ITER points grid obtained from 
the tensor product (XVAL,XVAL).

The positive integer ITER determines the number of iterations computed and 
thus, the refinement of the approximations.

[S,W1,W2,W3,XYVAL] = wavefun2('wname',ITER,'plot') computes and also 
plots the functions.

[S,W1,W2,W3,XYVAL] = wavefun2('wname',A,B), where A and B are positive 
integers, is equivalent to 
[S,W1,W2,W3,XYVAL] = wavefun2('wname',max(A,B)). The resulting 
functions are plotted. 

When A is set equal to the special value 0,

• [S,W1,W2,W3,XYVAL] = wavefun2('wname',0) is equivalent to 
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4,0).

• [S,W1,W2,W3,XYVAL] = wavefun2('wname') is equivalent to 
[S,W1,W2,W3,XYVAL] = wavefun2('wname',4).

The output arguments are optional.

Note  The wavefun2 function can only be used with an orthogonal wavelet.
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Examples On the following graph, a linear approximation of the sym4 wavelet obtained 
using the cascade algorithm is shown.

% Set number of iterations and wavelet name. 
iter = 4;
wav = 'sym4';

% Compute approximations of the wavelet and scale functions using
% the cascade algorithm and plot.
[s,w1,w2,w3,xyval] = wavefun2(wav,iter,0);

Algorithm See wavefun for more information.

References Daubechies, I., Ten lectures on wavelets, CBMS, SIAM, 1992, pp. 202–213.

Strang, G.; T. Nguyen (1996), Wavelets and Filter Banks, Wellesley-Cambridge 
Press.

See Also intwave, wavefun, waveinfo, wfilters
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8waveinfoPurpose Wavelets information

Syntax waveinfo
waveinfo('wname')

Description waveinfo provides information on all wavelets within the toolbox. 

waveinfo('wname') provides information on the wavelet family whose short 
name is specified by the string 'wname'. Available family short names are 
listed in the table below.

Wavelet Family 
Short Name

Wavelet Family Name

'haar' Haar wavelet

'db' Daubechies wavelets

'sym' Symlets

'coif' Coiflets

'bior' Biorthogonal wavelets

'rbio' Reverse biorthogonal wavelets

'meyr' Meyer wavelet

'dmey' Discrete approximation of Meyer wavelet

'gaus' Gaussian wavelets

'mexh' Mexican hat wavelet

'morl' Morlet wavelet

'cgau' Complex Gaussian wavelets

'shan' Shannon wavelets

'fbsp' Frequency B-Spline wavelets

'cmor' Complex Morlet wavelets
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The family short names can also be user-defined ones (see wavemngr for more 
information).

waveinfo('wsys') provides information on wavelet packets.

Examples waveinfo('db')

DBINFO Information on Daubechies wavelets. 
Daubechies Wavelets 
General characteristics: Compactly supported 
wavelets with extremal phase and highest 
number of vanishing moments for a given 
support width. Associated scaling filters are 
minimum-phase filters. 

Family Daubechies 
Short name db 
Order N N strictly positive integer 
Examples db1 or haar, db4, db15 

Orthogonal yes 
Biorthogonal yes 
Compact support yes 
DWT possible 
CWT possible 

Support width 2N-1 
Filters length 2N 
Regularity about 0.2 N for large N 
Symmetry far from 
Number of vanishing moments for psi N 

Reference: I. Daubechies, 
Ten lectures on wavelets CBMS, SIAM, 61, 1994, 194-202.

See Also wavemngr
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8waveletfamiliesPurpose Wavelet families and family members

Syntax waveletfamilies
waveletfamilies('f')
waveletfamilies('n')
waveletfamilies('a')

Description waveletfamilies or waveletfamilies('f') displays the names of all 
available wavelet families.

waveletfamilies('n') displays the names of all available wavelets in each 
family.

waveletfamilies('a') displays all available wavelet families with their 
corresponding properties.

Examples waveletfamilies

===================================
Haar              haar           
Daubechies        db             
Symlets           sym            
Coiflets          coif           
BiorSplines       bior           
ReverseBior       rbio           
Meyer             meyr           
DMeyer            dmey           
Gaussian          gaus           
Mexican_hat       mexh           
Morlet            morl           
Complex Gaussian  cgau           
Shannon           shan           
Frequency B-Splinefbsp           
Complex Morlet    cmor           
===================================
 
waveletfamilies('n')

===================================         
Haar                    haar                    
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===================================         
Daubechies              db                  
------------------------------              
db1 db2 db3 db4                             
db5 db6 db7 db8                             
db9 db10    db**                            
===================================         
Symlets                 sym                 
------------------------------              
sym2    sym3    sym4    sym5                
sym6    sym7    sym8    sym**               
===================================         
Coiflets                coif                
------------------------------              
coif1   coif2   coif3   coif4               
coif5                                       
===================================         
BiorSplines             bior                
------------------------------              
bior1.1 bior1.3 bior1.5 bior2.2             
bior2.4 bior2.6 bior2.8 bior3.1             
bior3.3 bior3.5 bior3.7 bior3.9             
bior4.4 bior5.5 bior6.8                     
===================================         
ReverseBior             rbio                
------------------------------              
rbio1.1 rbio1.3 rbio1.5 rbio2.2             
rbio2.4 rbio2.6 rbio2.8 rbio3.1             
rbio3.3 rbio3.5 rbio3.7 rbio3.9             
rbio4.4 rbio5.5 rbio6.8                     
===================================         
Meyer                   meyr                
===================================         
DMeyer                  dmey                
===================================         
Gaussian                gaus                
------------------------------              
gaus1   gaus2   gaus3   gaus4               
gaus5   gaus6   gaus7   gaus8               
gaus**                                      
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===================================         
Mexican_hat             mexh                
===================================         
Morlet                  morl                
===================================         
Complex Gaussian        cgau                
------------------------------              
cgau1   cgau2   cgau3   cgau4               
cgau5   cgau**                              
===================================         
Shannon                 shan                
------------------------------              
shan1-1.5   shan1-1 shan1-0.5   shan1-0.1   
shan2-3 shan**                              
===================================         
Frequency B-Spline      fbsp                
------------------------------              
fbsp1-1-1.5 fbsp1-1-1   fbsp1-1-0.5 fbsp2-1-1   
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**              
===================================         
Complex Morlet          cmor                
------------------------------              
cmor1-1.5   cmor1-1 cmor1-0.5   cmor1-1     
cmor1-0.5   cmor1-0.1   cmor**              
===================================         
 
waveletfamilies('a')

Type of Wavelets
-----------------
type = 1   - orthogonals wavelets          (F.I.R.)
type = 2   - biorthogonals wavelets        (F.I.R.)
type = 3   - with scale function
type = 4   - without scale function
type = 5   - complex wavelet.
----------------------------------------------------------------
-
 
------------------------
Family Name : Haar
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haar
1
no
no
dbwavf
 
------------------------
Family Name : Daubechies
db
1
1 2 3 4 5 6 7 8 9 10 **
integer
dbwavf
 
------------------------
Family Name : Symlets
sym
1
2 3 4 5 6 7 8 **
integer
symwavf
 
------------------------
Family Name : Coiflets
coif
1
1 2 3 4 5
integer
coifwavf
 
------------------------
Family Name : BiorSplines
bior
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real
biorwavf
 
------------------------
Family Name : ReverseBior
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rbio
2
1.1 1.3 1.5 2.2 2.4 2.6 2.8 3.1 3.3 3.5 3.7 3.9 4.4 5.5 6.8
real 
rbiowavf
 
------------------------
Family Name : Meyer
meyr
3
no
no
meyer
-8 8
------------------------
Family Name : DMeyer
dmey
1
no
no
dmey.mat
 
------------------------
Family Name : Gaussian
gaus
4
1 2 3 4 5 6 7 8 **
integer
gauswavf
-5 5
------------------------
Family Name : Mexican_hat
mexh
4
no
no
mexihat
-8 8
-------------------------
Family Name : Morlet
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morl
4
no
no
morlet
-8 8
------------------------
Family Name : Complex Gaussian
cgau
5
1 2 3 4 5 **
integer
cgauwavf
-5 5
------------------------
Family Name : Shannon
shan
5
1-1.5 1-1 1-0.5 1-0.1 2-3 **
string
shanwavf
-20 20
------------------------
Family Name : Frequency B-Spline
fbsp
5
1-1-1.5 1-1-1 1-1-0.5 2-1-1 2-1-0.5 2-1-0.1 **
string
fbspwavf
-20 20
------------------------
Family Name : Complex Morlet
cmor
5
1-1.5 1-1 1-0.5 1-1 1-0.5 1-0.1 **
string
cmorwavf
-8 8
------------------------
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See Also wavemngr
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8wavemenuPurpose Wavelet Toolbox™ GUI tools

Syntax wavemenu 

Description wavemenu brings up a menu for accessing the various graphical tools provided 
in the Wavelet Toolbox software. For instructions on using these tools see the 
corresponding chapters in the Wavelet Toolbox User’s Guide.

Examples wavemenu

Tools Chapter

Wavelet 1-D and Wavelet 2-D Chapter 2, “Using Wavelets”

Wavelet Packet 1-D and Wavelet 
Packet 2-D

Chapter 5, “Using Wavelet Packets”

Continuous Wavelet 1-D Chapter 2, “Using Wavelets”

Complex Continuous Wavelet 1-D Chapter 2, “Using Wavelets”

Wavelet Display and Wavelet 
Packet Display

Chapter 1, “Wavelets: A New Tool for 
Signal Analysis”

SWT De-noising 1-D and SWT 
De-noising 2-D

Chapter 2, “Using Wavelets”

Density Estimation 1-D Chapter 2, “Using Wavelets”

Regression Estimation 1-D Chapter 2, “Using Wavelets”

Wavelet Coefficients Selection 1-D Chapter 2, “Using Wavelets”

Wavelet Coefficients Selection 2-D Chapter 2, “Using Wavelets”

Signal Extension and Image 
Extension

Chapter 2, “Using Wavelets”
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8wavemngrPurpose Wavelet manager

Syntax wavemngr('add',FN,FSN,WT,NUMS,FILE)
wavemngr('add',FN,FSN,WT,NUMS,FILE,B)
wavemngr('del',N)
wavemngr('restore')
wavemngr('restore',IN2)
OUT1 = wavemngr('read')
OUT1 = wavemngr('read',IN2)
OUT1 = wavemngr('read_asc')

Description wavemngr is a type of wavelets manager. It allows you to add, delete, restore, or 
read wavelets.

wavemngr('add',FN,FSN,WT,NUMS,FILE) or 
wavemngr('add',FN,FSN,WT,NUMS,FILE,B) or 
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE) or 
wavemngr('add',FN,FSN,WT,{NUMS,TYPNUMS},FILE,B), add a new wavelet 
family to the toolbox.

FN = Family Name (string)

FSN = Family Short Name (string of length equal or less than four characters)

WT defines the wavelet type:

• WT = 1, for orthogonal wavelets

• WT = 2, for biorthogonal wavelets

• WT = 3, for wavelet with scaling function

• WT = 4, for wavelet without scaling function

• WT = 5, for complex wavelet without scaling function

If the family contains a single wavelet, NUMS = ' '.
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Examples:

If the wavelet is member of a finite family of wavelets, NUMS is a string 
containing a blank separated list of items representing wavelet parameters.

Example:

If the wavelet is part of an infinite family of wavelets, NUMS is a string 
containing a blank separated list of items representing wavelet parameters, 
terminated by the special sequence **.

Examples:

In these last two cases, TYPNUMS specifies the wavelet parameter input format: 
'integer' or 'real' or 'string'; the default value is 'integer'.

Examples:

FILE = MAT-file or M-file name (string). See usage in the “Examples” section. 

B = [lb ub] specifies lower and upper bounds of effective support for wavelets 
of type = 3, 4, or 5.

This option is fully documented in Chapter 7, “Adding Your Own Wavelets.”

wavemngr('del',N), deletes a wavelet or a wavelet family. N is the Family 
Short Name or the Wavelet Name (in the family). N is a string.

mexh j

morl

bior NUMS = '1.1 1.3 ... 4.4 5.5 6.8'

db NUMS = '1 2 3 4 5 6 7 8 9 10 **'

shan NUMS = '1-1.5 1-1 1-0.5 1-0.1 2-3 **'

db TYPNUMS = 'integer'

bior TYPNUMS = 'real'

shan TYPNUMS = 'string'
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wavemngr('restore') or wavemngr('restore',IN2) restores previous or 
initial wavelets. If nargin = 1, the previous wavelets.asc ASCII-file is 
restored; otherwise the initial wavelets.asc ASCII-file is restored. Here IN2 is 
a dummy argument.

OUT1 = wavemngr('read') returns all wavelet family names. 

OUT1 = wavemngr('read',IN2) returns all wavelet names, IN2 is a dummy 
argument. 

OUT1 = wavemngr('read_asc') reads wavelets.asc ASCII-file and returns all 
wavelets information.

Examples % List initial wavelets families. 
wavemngr('read')

ans =
=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
===================================
% List all wavelets. 
wavemngr('read',1)

ans =
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===================================         
Haar              haar                    
===================================         
Daubechies        db                      
------------------------------              
db1 db2 db3 db4                            
db5 db6 db7 db8                            
db9 db10 db**                              
===================================         
Symlets           sym                     
------------------------------              
sym2 sym3 sym4 sym5                        
sym6 sym7 sym8 sym**                       
===================================         
Coiflets          coif                    
------------------------------              
coif1 coif2 coif3 coif4                    
coif5                                      
===================================         
BiorSplines       bior                    
------------------------------              
bior1.1 bior1.3 bior1.5 bior2.2            
bior2.4 bior2.6 bior2.8 bior3.1            
bior3.3 bior3.5 bior3.7 bior3.9            
bior4.4 bior5.5 bior6.8                    
===================================         
ReverseBior       rbio                    
------------------------------              
rbio1.1 rbio1.3 rbio1.5 rbio2.2            
rbio2.4 rbio2.6 rbio2.8 rbio3.1            
rbio3.3 rbio3.5 rbio3.7 rbio3.9            
rbio4.4 rbio5.5 rbio6.8                    
===================================         
Meyer             meyr                    
===================================         
DMeyer            dmey                    
===================================         
Gaussian          gaus                    
------------------------------              
gaus1 gaus2 gaus3 gaus4                    
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gaus5 gaus6 gaus7 gaus8                    
gaus**                                     
===================================         
Mexican_hat       mexh                    
===================================         
Morlet            morl                    
===================================         
Complex Gaussian  cgau                    
------------------------------              
cgau1 cgau2 cgau3 cgau4                    
cgau5 cgau**                               
===================================         
Shannon           shan                    
------------------------------              
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1      
shan2-3 shan**                             
===================================         
Frequency B-Spline fbsp                    
------------------------------              
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**             
===================================         
Complex Morlet    cmor                    
------------------------------              
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1        
cmor1-0.5 cmor1-0.1 cmor**                 
===================================         

In the following example, new compactly supported orthogonal wavelets are 
added to the toolbox. These wavelets, which are a slight generalization of the 
Daubechies wavelets, are based on the use of Bernstein polynomials and are 
due to Kateb and Lemarié in an unpublished work.

Note  The M-files used in this example can be found in the wavedemo 
directory.
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% Add new family of orthogonal wavelets. 
% You must define: 
% 
% Family Name: Lemarie 
% Family Short Name: lem 
% Type of wavelet: 1 (orth) 
% Wavelets numbers: 1 2 3 4 5 
% File driver: lemwavf 
% 
% The function lemwavf.m must be as follows: 
% function w = lemwavf(wname) 
% where the input argument wname is a string: 
% wname = 'lem1' or 'lem2' ... i.e., 
% wname = sh.name + number 
% and w the corresponding scaling filter. 
% The addition is obtained using:

wavemngr('add','Lemarie','lem',1,'1 2 3 4 5','lemwavf'); 

% The ascii file 'wavelets.asc' is saved as 
% 'wavelets.prv', then it is modified and 
% the MAT file 'wavelets.inf' is generated.

% List wavelets families.
wavemngr('read')

ans =
===================================
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
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Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
Lemarie lem 
===================================
% Remove the added family. 
wavemngr('del','Lemarie');

% List wavelets families. 
wavemngr('read')

ans =
=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
===================================
% Restore the previous ascii file 
% 'wavelets.prv', then build 
% the MAT-file 'wavelets.inf'. 
wavemngr('restore');

% List restored wavelets. 
wavemngr('read',1)

ans =
===================================         
Haar              haar                    
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===================================         
Daubechies        db                      
------------------------------              
db1 db2 db3 db4                            
db5 db6 db7 db8                            
db9 db10 db**                              
===================================         
Symlets           sym                     
------------------------------              
sym2 sym3 sym4 sym5                        
sym6 sym7 sym8 sym**                       
===================================         
Coiflets          coif                    
------------------------------              
coif1 coif2 coif3 coif4                    
coif5                                      
===================================         
BiorSplines       bior                    
------------------------------              
bior1.1 bior1.3 bior1.5 bior2.2            
bior2.4 bior2.6 bior2.8 bior3.1            
bior3.3 bior3.5 bior3.7 bior3.9            
bior4.4 bior5.5 bior6.8                    
===================================         
ReverseBior       rbio                    
------------------------------              
rbio1.1 rbio1.3 rbio1.5 rbio2.2            
rbio2.4 rbio2.6 rbio2.8 rbio3.1            
rbio3.3 rbio3.5 rbio3.7 rbio3.9            
rbio4.4 rbio5.5 rbio6.8                    
===================================         
Meyer             meyr                    
===================================         
DMeyer            dmey                    
===================================         
Gaussian          gaus                    
------------------------------              
gaus1 gaus2 gaus3 gaus4                    
gaus5 gaus6 gaus7 gaus8                    
gaus**                                     



wavemngr

8-308

===================================         
Mexican_hat       mexh                    
===================================         
Morlet            morl                    
===================================         
Complex Gaussian  cgau                    
------------------------------              
cgau1 cgau2 cgau3 cgau4                    
cgau5 cgau**                               
===================================         
Shannon           shan                    
------------------------------              
shan1-1.5 shan1-1 shan1-0.5 shan1-0.1      
shan2-3 shan**                             
===================================         
Frequency B-Spline fbsp                    
------------------------------              
fbsp1-1-1.5 fbsp1-1-1 fbsp1-1-0.5 fbsp2-1-1
fbsp2-1-0.5 fbsp2-1-0.1 fbsp**             
===================================         
Complex Morlet    cmor                    
------------------------------              
cmor1-1.5 cmor1-1 cmor1-0.5 cmor1-1        
cmor1-0.5 cmor1-0.1 cmor**                 
===================================         
Lemarie lem 
------------------------------ 
lem1 lem2 lem3 lem4 lem5 
===================================
% Restore initial wavelets. 
% 
% Restore the initial ascii file 
% 'wavelets.ini' and initial 
% MAT-file 'wavelets.bin'. 
wavemngr('restore',0);

% List wavelets families. 
wavemngr('read')
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ans =
=================================== 
Haar haar           
Daubechies db             
Symlets sym            
Coiflets coif           
BiorSplines bior           
ReverseBior rbio           
Meyer meyr           
DMeyer dmey           
Gaussian gaus           
Mexican_hat mexh           
Morlet morl           
Complex Gaussian cgau           
Shannon shan           
Frequency B-Spline fbsp           
Complex Morlet cmor 
===================================
% Add new family of orthogonal wavelets.
wavemngr('add','Lemarie','lem',1,'1 2 3','lemwavf');

% All command line capabilities are available for 
% the new wavelets. 
% 
% Example 1: compute the four associated filters. 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('lem3');

% Example 2: compute scale and wavelet functions. 
[phi,psi,xval] = wavefun('lem3');

% Add a new family of orthogonal wavelets: special form 
% for the GUI mode. 
% 
% The M-file lemwavf allows you to compute the filter for 
% any order. If you want to get a popup of the form
% 1 2 3 **, associated with the family, then wavelets are 
% appended for GUI mode using:

wavemngr('restore',0); 
wavemngr('add','Lemarie','lem',1,'1 2 3 **','lemwavf');
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% After this sequence, all GUI capabilities are available for 
% the new wavelets. 
% Note that the last command allows a short cut in the 
% order definition only if possible orders are integers.

Caution wavemngr works on the current directory. If you add a new wavelet 
family, it is available in this directory only. Refer to Chapter 7, “Adding Your 
Own Wavelets.”

Limitations wavemngr allows you to add a new wavelet. You must verify that it is truly a 
wavelet. No check is performed either about this point or about the type of the 
new wavelet.
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8wavenamesPurpose Wavelet names for LWT

Syntax W = wavenames(T)

Description W = wavenames(T) returns a cell array that contains the name of all wavelets 
of type T. The valid values for T are

•   'all' — all wavelets

• 'lazy' — “lazy” wavelet

• 'orth' — orthogonal wavelets

• 'bior' — biorthogonal wavelets

W = wavenames is equivalent to W = wavenames('all').
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8waverecPurpose Multilevel 1-D wavelet reconstruction

Syntax X = waverec(C,L,'wname')
X = waverec(C,L,Lo_R,Hi_R)

Description waverec performs a multilevel one-dimensional wavelet reconstruction using 
either a specific wavelet ('wname', see wfilters) or specific reconstruction 
filters (Lo_R and Hi_R). waverec is the inverse function of wavedec in the sense 
that the abstract statement waverec(wavedec(X,N,'wname'),'wname') 
returns X.

X = waverec(C,L,'wname') reconstructs the signal X based on the multilevel 
wavelet decomposition structure [C,L] and wavelet 'wname'. (For information 
about the decomposition structure, see wavedec.) 

X = waverec(C,L,Lo_R,Hi_R) reconstructs the signal X as above, using the 
reconstruction filters you specify. Lo_R is the reconstruction low-pass filter and 
Hi_R is the reconstruction high-pass filter.

Note that X = waverec(C,L,'wname') is equivalent to 
X = appcoef(C,L,'wname',0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original one-dimensional signal. 
load leleccum; s = leleccum(1:3920); ls = length(s); 

% Perform decomposition of signal at level 3 using db5. 
[c,l] = wavedec(s,3,'db5');

% Reconstruct s from the wavelet decomposition structure [c,l]. 
a0 = waverec(c,l,'db5');

% Check for perfect reconstruction. 
err = norm(s-a0)
err =

3.2079e-09

See Also appcoef, idwt, wavedec
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8waverec2Purpose Multilevel 2-D wavelet reconstruction

Syntax X = waverec2(C,S,'wname')
X = waverec2(C,S,Lo_R,Hi_R)

Description waverec2 is a two-dimensional wavelet analysis function. 

X = waverec2(C,S,'wname') performs a multilevel wavelet reconstruction of 
the matrix X based on the wavelet decomposition structure [C,S]. For detailed 
storage information, see wavedec2. 'wname' is a string containing the name of 
the wavelet. See wfilters for more information. 

Instead of specifying the wavelet name, you can specify the filters.

• X = waverec2(C,S,Lo_R,Hi_R), Lo_R is the reconstruction low-pass filter 

• Hi_R is the reconstruction high-pass filter. 

waverec2 is the inverse function of wavedec2 in the sense that the abstract 
statement waverec2(wavedec2(X,N,'wname'),'wname') returns X.

X = waverec2(C,S,'wname') is equivalent to X = appcoef2(C,S,'wname',0).

Remarks If C and S are obtained from an indexed image analysis or a truecolor image 
analysis, X is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).
% Load original image. 
load woman; 
% X contains the loaded image.

% Perform decomposition at level 2 
% of X using sym4. 
[c,s] = wavedec2(X,2,'sym4');

% Reconstruct X from the wavelet 
% decomposition structure [c,s]. 
a0 = waverec2(c,s,'sym4');

% Check for perfect reconstruction. 
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max(max(abs(X-a0)))
ans =

2.5565e-10

See Also appcoef2, idwt2, wavedec2
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8wbmpenPurpose Penalized threshold for wavelet 1-D or 2-D de-noising

Syntax THR = wbmpen(C,L,SIGMA,ALPHA)

Description THR = wbmpen(C,L,SIGMA,ALPHA) returns global threshold THR for de-noising. 
THR is obtained by a wavelet coefficients selection rule using a penalization 
method provided by Birge-Massart.

[C,L] is the wavelet decomposition structure of the signal or image to be 
de-noised.

SIGMA is the standard deviation of the zero mean Gaussian white noise in 
de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number 
greater than 1. The sparsity of the wavelet representation of the de-noised 
signal or image grows with ALPHA. Typically ALPHA = 2.

THR minimizes the penalized criterion given by 

let t* be the minimizer of 

crit(t) = -sum(c(k)^2,k≤t) + 2*SIGMA^2*t*(ALPHA + log(n/t)) 

where c(k) are the wavelet coefficients sorted in decreasing order of their 
absolute value and n is the number of coefficients; then THR = c(t*) .

wbmpen(C,L,SIGMA,ALPHA,ARG) computes the global threshold and, in 
addition, plots three curves:

• 2*SIGMA^2*t*(ALPHA + log(n/t))

• sum(c(k)^2,k£t)

• crit(t)

Examples % Example 1: Signal de-noising.
% Load noisy bumps signal.
load noisbump; x = noisbump;

% Perform a wavelet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
[c,l] = wavedec(x,lev,wname);
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% Estimate the noise standard deviation from the
% detail coefficients at level 1, using wnoisest.
sigma = wnoisest(c,l,1);

% Use wbmpen for selecting global threshold  
% for signal de-noising, using the tuning parameter.
alpha = 2;
thr = wbmpen(c,l,sigma,alpha)
thr =

    2.7681

% Use wdencmp for de-noising the signal using the above
% threshold with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,l,wname,lev,thr,'s',keepapp);

% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x), title('Original signal')
subplot(212), plot(xd), title('De-noised signal') 
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% Example 2: Image de-noising.
% Load original image.
load noiswom; 
nbc = size(map,1);

% Perform a wavelet decomposition of the image
% at level 3 using coif2.
wname = 'coif2'; lev = 3;
[c,s] = wavedec2(X,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1.
det1 = detcoef2('compact',c,s,1);
sigma = median(abs(det1))/0.6745;

% Use wbmpen for selecting global threshold  
% for image de-noising.
alpha = 1.2;
thr = wbmpen(c,l,sigma,alpha)

thr =

   36.0621

% Use wdencmp for de-noising the image using the above
% thresholds with soft thresholding and approximation kept.
keepapp = 1;
xd = wdencmp('gbl',c,s,wname,lev,thr,'s',keepapp);

% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
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subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')

See Also wden, wdencmp, wpbmpen, wpdencmp
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8wcodematPurpose Extended pseudocolor matrix scaling

Syntax Y = wcodemat(X,NBCODES,OPT,ABSOL) 
Y = wcodemat(X,NBCODES,OPT) 
Y = wcodemat(X,NBCODES) 
Y = wcodemat(X)

Description  wcodemat is a general utility.

Y = wcodemat(X,NBCODES,OPT,ABSOL) returns a coded version of input matrix 
X if ABSOL = 0, or ABS(X) if ABSOL is nonzero, using the first NBCODES integers. 
Coding can be done row-wise (OPT = 'row' or 'r'), columnwise (OPT = 'col' 
or 'c'), or globally (OPT = 'mat' or 'm').

Coding uses a regular grid between the minimum and the maximum values of 
each row (column or matrix, respectively).

Y = wcodemat(X,NBCODES,OPT) is equivalent to 
Y = wcodemat(X,NBCODES,OPT,1).

Y = wcodemat(X,NBCODES) is equivalent to 
Y = wcodemat(X,NBCODES,'mat',1).

Y = wcodemat(X) is equivalent to Y = wcodemat(X,16,'mat',1).
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8wdcbmPurpose Thresholds for wavelet 1-D using Birge-Massart strategy

Syntax [THR,NKEEP] = wdcbm(C,L,ALPHA)
[THR,NKEEP] = wdcbm(C,L,ALPHA,M)

Description [THR,NKEEP] = wdcbm(C,L,ALPHA,M) returns level-dependent thresholds THR 
and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR 
is obtained using  a wavelet coefficients selection rule based on the 
Birge-Massart strategy.

[C,L] is the wavelet decomposition structure of the signal to be de-noised or 
compressed, at level j = length(L)-2. ALPHA and M must be real numbers 
greater than 1.

THR is a vector of length j; THR(i) contains the threshold for level i. 

NKEEP is a vector of length j; NKEEP(i) contains the number of coefficients to be 
kept at level i.

j, M and ALPHA define the strategy:

• At level j+1 (and coarser levels), everything is kept.

• For level i from 1 to j, the ni largest coefficients are kept with 
ni = M (j+2-i)ALPHA. 

Typically ALPHA = 1.5 for compression and ALPHA = 3 for de-noising.

A default value for M is M = L(1), the number of the coarsest approximation 
coefficients, since the previous formula leads for i = j+1, to nj+1 = M = L(1). 
Recommended values for M are from L(1) to 2*L(1).

wdcbm(C,L,ALPHA) is equivalent to wdcbm(C,L,ALPHA,L(1)). 

Examples % Load electrical signal and select a part of it.
load leleccum; indx = 2600:3100; 
x = leleccum(indx);

% Perform a wavelet decomposition of the signal
% at level 5 using db3.
wname = 'db3'; lev = 5;
[c,l] = wavedec(x,lev,wname);
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% Use wdcbm for selecting level dependent thresholds  
% for signal compression using the adviced parameters.
alpha = 1.5; m = l(1);
[thr,nkeep] = wdcbm(c,l,alpha,m)

thr =
   19.5569   17.1415   20.2599   42.8959   15.0049

nkeep =
     1     2     3     4     7

% Use wdencmp for compressing the signal using the above
% thresholds with hard thresholding.
[xd,cxd,lxd,perf0,perfl2] = ...
                  wdencmp('lvd',c,l,wname,lev,thr,'h');

% Plot original and compressed signals.
subplot(211), plot(indx,x), title('Original signal');
subplot(212), plot(indx,xd), title('Compressed signal');
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' %  -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
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2−norm rec.: 99.9549 %  −− zero cfs: 92.9524 %
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References Birgé, L.; P. Massart (1997), “From model selection to adaptive estimation,” in 
D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55–88.

See Also wden, wdencmp, wpdencmp
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8wdcbm2Purpose Thresholds for wavelet 2-D using Birge-Massart strategy

Syntax [THR,NKEEP] = wdcbm2(C,S,ALPHA)
[THR,NKEEP] = wdcbm2(C,S,ALPHA,M)

Description [THR,NKEEP] = wdcbm2(C,S,ALPHA,M) returns level-dependent thresholds THR 
and numbers of coefficients to be kept NKEEP, for de-noising or compression. THR 
is obtained using a wavelet coefficients selection rule based on the 
Birge-Massart strategy.

[C,S] is the wavelet decomposition structure of the image to be de-noised or 
compressed, at level j = size(S,1)-2.

ALPHA and M must be real numbers greater than 1.

THR is a matrix 3 by j; THR(:,i) contains the level dependent thresholds in the 
three orientations: horizontal, diagonal, and vertical, for level i. 

NKEEP is a vector of length j; NKEEP(i) contains the number of coefficients to be 
kept at level i.

j, M and ALPHA define the strategy:

• At level j+1 (and coarser levels), everything is kept.

• For level i from 1 to j, the ni largest coefficients are kept with 
ni = M (j+2-i)ALPHA. 

Typically ALPHA = 1.5 for compression and ALPHA = 3 for de-noising.

A default value for M is M = prod(S(1,:)), the length of the coarsest 
approximation coefficients, since the previous formula leads for i = j+1, to 
nj+1 = M = prod(S(1,:)). 

Recommended values for M are from prod(S(1,:)) to 6*prod(S(1,:)).

wdcbm2(C,S,ALPHA) is equivalent to wdcbm2(C,S,ALPHA,prod(S(1,:))). 

Examples % Load original image.
load detfingr; 
nbc = size(map,1);

% Perform a wavelet decomposition of the image
% at level 3 using sym4.
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wname = 'sym4'; lev = 3;
[c,s] = wavedec2(X,lev,wname);

% Use wdcbm2 for selecting level dependent thresholds  
% for image compression using the adviced parameters.
alpha = 1.5; m = 2.7*prod(s(1,:));
[thr,nkeep] = wdcbm2(c,s,alpha,m)

thr =
   21.4814   46.8354   40.7907
   21.4814   46.8354   40.7907
   21.4814   46.8354   40.7907

nkeep =
         624         961        1765

% Use wdencmp for compressing the image using the above
% thresholds with hard thresholding.
[xd,cxd,sxd,perf0,perfl2] = ...
                  wdencmp('lvd',c,s,wname,lev,thr,'h');

% Plot original and compressed images.
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc)),
title('Original image')
subplot(222), image(wcodemat(xd,nbc)),
title('Compressed image')
xlab1 = ['2-norm rec.: ',num2str(perfl2)];
xlab2 = [' %  -- zero cfs: ',num2str(perf0), ' %'];
xlabel([xlab1 xlab2]);
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References Birgé, L.; P. Massart (1997). “From model selection to adaptive estimation,” in 
D. Pollard (ed), Festchrift for L. Le Cam, Springer, pp. 55–88.

See Also wdencmp, wpdencmp
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8wdcenergyPurpose Multisignal 1-D decomposition energy distribution

Syntax [E,PEC,PECFS] = wdecenergy(DEC)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort')
[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG)
[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG)

Description [E,PEC,PECFS] = wdecenergy(DEC) computes the vector E that contains the 
energy (L2-Norm) of each decomposed signal, the matrix PEC that contains the 
percentage of energy for each wavelet component (approximation and details) 
of each signal, and the matrix PECFS that contains the percentage of energy for 
each coefficient. 

• E(i) is the energy (L2-norm) of the ith signal.

• PEC(i,1) is the percentage of energy for the approximation of level 
MAXLEV = DEC.level of the ith signal.

• PEC(i,j), j=2,...,MAXLEV+1 is the percentage of energy for the detail of 
level (MAXLEV+1-j) of the ith signal.

• PECFS(i,j), is the percentage of energy for jth coefficients of the ith signal.

[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,'sort') returns PECFS 
sorted (by row) in ascending order and an index vector IDXSORT. 

• Replacing 'sort' by 'ascend' returns the same result.

• Replacing 'sort' by 'descend' returns PECFS sorted in descending order. 

LONGS is a vector containing the lengths of each family of coefficients. 

[E,PEC,PECFS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns the values for 
the signals whose indices are given by the IDXSIG vector.

[E,PEC,PECFS,IDXSORT,LONGS] = wdecenergy(DEC,OPTSORT,IDXSIG) returns 
the values for the signals whose indices are given by the IDXSIG vector, the 
index vector IDXSORT, and LONGS, which  is a vector containing the lengths of 
each family of coefficients.  Valid values for OPTSORT are 'none', 'sort', 
'ascend', 'descend'.

Examples % Load original 1D-multisignal.
load thinker
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% Perform a decomposition at level 2 using wavelet db2.
dec = mdwtdec('r',X,2,'db2');

% Compute the energy distribution.
[E,PEC,PECFS] = wdecenergy(dec);

% Display the total energy and the distribution of energy 
% for each wavelet component (A2, D2, D1).
E31 = E(31)

E31 =
  2.2411e+006

perA2D2D1 = PEC(31,:)

perA2D2D1 =
   99.3850    0.2926    0.3225

% Compare the coefficient energy distribution 
% for signal 1 and signal 31.
PECFS_1  = PECFS(1,:); 
PECFS_31 = PECFS(31,:);
figure;
plot(PECFS_1,'r','linewidth',2); hold on
plot(PECFS_31,'b','linewidth',2);
grid; set(gca,'Xlim',[1,size(PECFS,2)])
title('X dashed line and XD solid line')
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See Also mdwtdec, mdwtrec
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8wdenPurpose Automatic 1-D de-noising

Syntax [XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname')
[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname')

Description wden is a one-dimensional de-noising function.

wden performs an automatic de-noising process of a one-dimensional signal 
using wavelets.

[XD,CXD,LXD] = wden(X,TPTR,SORH,SCAL,N,'wname') returns a de-noised 
version XD of input signal X obtained by thresholding the wavelet coefficients.

Additional output arguments [CXD,LXD] are the wavelet decomposition 
structure (see wavedec for more information) of the de-noised signal XD. 

TPTR string contains the threshold selection rule:

• 'rigrsure' uses the principle of Stein’s Unbiased Risk.

• 'heursure' is an heuristic variant of the first option.

• 'sqtwolog' for universal threshold 

• 'minimaxi' for minimax thresholding (see thselect for more information)

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more 
information).

SCAL defines multiplicative threshold rescaling:

'one' for no rescaling

'sln' for rescaling using a single estimation of level noise based on first-level 
coefficients

'mln' for rescaling done using level-dependent estimation of level noise

Wavelet decomposition is performed at level N and 'wname' is a string 
containing the name of the desired orthogonal wavelet (see wmaxlev and 
wfilters for more information). 

[XD,CXD,LXD] = wden(C,L,TPTR,SORH,SCAL,N,'wname') returns the same 
output arguments, using the same options as above, but obtained directly from 
the input wavelet decomposition structure [C,L] of the signal to be de-noised, 
at level N and using 'wname' orthogonal wavelet. 

2 .( )log
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The underlying model for the noisy signal is basically of the following form:

 where time n is equally spaced.

In the simplest model, suppose that e(n) is a Gaussian white noise N(0,1) and 
the noise level  a is supposed to be equal to 1.

The de-noising objective is to suppress the noise part of the signal s and to 
recover f. 

The de-noising procedure proceeds in three steps: 

1 Decomposition. Choose a wavelet, and choose a level N. Compute the wavelet 
decomposition of the signal s at level N.

2 Detail coefficients thresholding. For each level from 1 to N, select a threshold 
and apply soft thresholding to the detail coefficients.

3 Reconstruction. Compute wavelet reconstruction based on the original 
approximation coefficients of level N and the modified detail coefficients of 
levels from 1 to N. 

More details about threshold selection rules can be found in the “De-noising” 
section of Chapter 6, “Advanced Concepts”, in the User’s Guide, and in the help 
of the thselect function. Let us point out that

• The detail coefficients vector is the superposition of the coefficients of f and 
the coefficients of e, and that the decomposition of e leads to detail 
coefficients that are standard Gaussian white noises. 

• Minimax and SURE threshold selection rules are more conservative and are 
more convenient when small details of function f lie in the noise range. The 
two other rules remove the noise more efficiently. The option 'heursure' is 
a compromise.

In practice, the basic model cannot be used directly. This section examines the 
options available, to deal with model deviations. The remaining parameter 
scal has to be specified. It corresponds to threshold rescaling methods.

• Option scal = 'one' corresponds to the basic model. 

• In general, you can ignore the noise level that must be estimated. The detail 
coefficients CD1 (the finest scale) are essentially noise coefficients with 

s n( ) f n( ) σe n( )+=

σ
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standard deviation equal to . The median absolute deviation of the 
coefficients is a robust estimate of . The use of a robust estimate is crucial 
because if level 1 coefficients contain f details, these details are concentrated 
in few coefficients to avoid signal end effects, which are pure artifacts due to 
computations on the edges.

The option scal = 'sln' handles threshold rescaling using a single estima-
tion of level noise based on the first-level coefficients.

• When you suspect a nonwhite noise e, thresholds must be rescaled by a 
level-dependent estimation of the level noise. The same kind of strategy is 
used by estimating  level by level. This estimation is implemented in the 
M-file wnoisest, which handles the wavelet decomposition structure of the 
original signal s directly.

The option scal = 'mln' handles threshold rescaling using a level-dependent 
estimation of the level noise.

Examples % The current extension mode is zero-padding (see dwtmode).

% Set signal to noise ratio and set rand seed. 
snr = 3; init = 2055615866; 

% Generate original signal and a noisy version adding 
% a standard Gaussian white noise. 
[xref,x] = wnoise(3,11,snr,init);

% De-noise noisy signal using soft heuristic SURE thresholding 
% and scaled noise option, on detail coefficients obtained 
% from the decomposition of x, at level 5 by sym8 wavelet. 
lev = 5;
xd = wden(x,'heursure','s','one',lev,'sym8');

% Plot signals. 
subplot(611), plot(xref), axis([1 2048 -10 10]); 
title('Original signal'); 
subplot(612), plot(x), axis([1 2048 -10 10]); 
title(['Noisy signal - Signal to noise ratio = ',... 
num2str(fix(snr))]); 
subplot(613), plot(xd), axis([1 2048 -10 10]); 
title('De-noised signal - heuristic SURE'); 

σ
σ

σlev
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% De-noise noisy signal using soft SURE thresholding 
xd = wden(x,'heursure','s','one',lev,'sym8');

% Plot signal. 
subplot(614), plot(xd), axis([1 2048 -10 10]); 
title('De-noised signal - SURE');

% De-noise noisy signal using fixed form threshold with 
% a single level estimation of noise standard deviation. 
xd = wden(x,'sqtwolog','s','sln',lev,'sym8');

% Plot signal. 
subplot(615), plot(xd), axis([1 2048 -10 10]); 
title('De-noised signal - Fixed form threshold');

% De-noise noisy signal using minimax threshold with 
% a multiple level estimation of noise standard deviation. 
xd = wden(x,'minimaxi','s','sln',lev,'sym8');

% Plot signal. 
subplot(616), plot(xd), axis([1 2048 -10 10]); 
title('De-noised signal - Minimax');

% If many trials are necessary, it is better to perform 
% decomposition once and threshold it many times:
 
% decomposition. 
[c,l] = wavedec(x,lev,'sym8');
 
% threshold the decomposition structure [c,l].
xd = wden(c,l,'minimaxi','s','sln',lev,'sym8');

% Editing some graphical properties,
% the following figure is generated.
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References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, 103,  
Lecture Notes in Statistics, Springer Verlag.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten minute 
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, 
pp. 109–128. Frontières Ed. 

Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, Vol. 81, pp. 425–455.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf. 
Theory, 41, 3, pp. 613–627.

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet 
shrinkage: asymptotia,” Jour. Roy. Stat. Soc., series B, Vol. 57, No. 2, pp. 301–
369.

See Also thselect, wavedec, wdencmp wfilters, wthresh
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8wdencmpPurpose De-noising or compression

Syntax [XC,CXC,LXC,PERF0,PERFL2] = 
wdencmp('gbl',X,'wname',N,THR,SORH,KEEPAPP)

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH)

Description wdencmp is a one- or two-dimensional de-noising and compression-oriented 
function.

wdencmp performs a de-noising or compression process of a signal or an image, 
using wavelets.

[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,'wname',N,THR,SORH, 
KEEPAPP) returns a de-noised or compressed version XC of input signal X (one- 
or two-dimensional) obtained by wavelet coefficients thresholding using global 
positive threshold THR.

Additional output arguments [CXC,LXC] are the wavelet decomposition 
structure of XC (see wavedec or wavedec2 for more information). PERF0 and 
PERFL2 are L2-norm recovery and compression score in percentage.

PERFL2 = 100 ∗ (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes the 
wavelet decomposition structure of X.

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is 
reduced to

 

Wavelet decomposition is performed at level N and 'wname' is a string 
containing wavelet name (see wmaxlev and wfilters for more information). 
SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more 
information). If KEEPAPP = 1, approximation coefficients cannot be thresholded, 
otherwise it is possible. 

wdencmp('gbl',C,L,'wname',N,THR,SORH,KEEPAPP) has the same output 
arguments, using the same options as above, but obtained directly from the 
input wavelet decomposition structure [C,L] of the signal to be de-noised or 
compressed, at level N and using 'wname' wavelet. 

100 XC 2

X 2
--------------------------
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For the one-dimensional case and 'lvd' option, 
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH)or 
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH) 
have the same output arguments, using the same options as above, but 
allowing level-dependent thresholds contained in vector THR (THR must be of 
length N). In addition, the approximation is kept. Note that, with respect to 
wden (automatic de-noising), wdencmp allows more flexibility and you can 
implement your own de-noising strategy.

For the two-dimensional case and 'lvd' option, 
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',X,'wname',N,THR,SORH) or 
[XC,CXC,LXC,PERF0,PERFL2] = wdencmp('lvd',C,L,'wname',N,THR,SORH).

THR must be a matrix 3 by N containing the level-dependent thresholds in the 
three orientations, horizontal, diagonal, and vertical. 

Ideas for de-noising can be found in Chapter 2, “Using Wavelets,” and in the 
“Description” section of the wden function.

The compression features of a given wavelet basis are primarily linked to the 
relative scarceness of the wavelet domain representation for the signal. The 
notion behind compression is based on the concept that the regular signal 
component can be accurately approximated using a small number of 
approximation coefficients (at a suitably selected level) and some of the detail 
coefficients.

Like de-noising, the compression procedure contains three steps: 

1 Decomposition.

2 Detail coefficient thresholding. For each level from 1 to N, a threshold is 
selected and hard thresholding is applied to the detail coefficients. 

3 Reconstruction.

The difference with the de-noising procedure is found in step 2.
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Examples % The current extension mode is zero-padding (see dwtmode).

% Example 1: Use wdencmp for image de-noising.
%
% Load original image. 
load sinsin 
% X contains the loaded image.

% Generate noisy image. 
init=2055615866; randn('seed',init); 
x = X + 18*randn(size(X));

% find default values (see ddencmp). 
[thr,sorh,keepapp] = ddencmp('den','wv',x);
% de-noise image using global thresholding option. 
xd = wdencmp('gbl',x,'sym4',2,thr,sorh,keepapp);

% Using some plotting commands,
% the following figure is generated.
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% Example 2: Use wdencmp for signal compression.
%
% Load electrical signal and select a part. 
load leleccum; indx = 2600:3100; 
x = leleccum(indx);

% Compress using a fixed threshold. 
thr=35;
[xd,cxd,lxd,perf0,perfl2] = ... 
wdencmp('gbl',x,'db3',3,thr,'h',1);

% Using some plotting commands,
% the following figure is generated.

% Example 3: Use wdencmp for signal de-noising.
%
% Find default values (see ddencmp). 
[thr,sorh,keepapp] = ddencmp('den','wv',x);

% De-noise signal using global thresholding option. 
xd = wdencmp('gbl',x,'db3',2,thr,sorh,keepapp);
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2_norm rec.: 99.95 %  −− zero cfs: 85.08 %
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% Using some plotting commands,
% the following figure is generated.

% Example 4: Use wdencmp for image compression.
%
% Load original image. 
load woman; 
% X contains the loaded image. 

x=X(100:200,100:200); 
nbc = size(map,1);

% Wavelet decomposition of x. 
n = 5; w = 'sym2'; 
[c,l] = wavedec2(x,n,w);

% Wavelet coefficients thresholding. 
thr=20;
[xd,cxd,lxd,perf0,perfl2] = ... 
wdencmp('gbl',c,l,w,n,thr,'h',1);

% Using some plotting commands,
% the following figure is generated.
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% In addition the first option allows level and orientation-
% dependent thresholds. In this case the approximation is kept. 
% The level-dependent thresholds in the three orientations 
% horizontal, diagonal and vertical are as follows: 
thr_h = [17 18]; % Horizontal thresholds. 
thr_d = [19 20]; % Diagonal thresholds. 
thr_v = [21 22]; % Vertical thresholds.

thr = [thr_h ; thr_d ; thr_v] 

thr =
17 18
19 20
21 22

[xd,cxd,lxd,perf0,perfl2] = ... 
wdencmp('lvd',x,'sym8',2,thr,'h');

References DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression through 
wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719–
746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten minute 
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, 
pp. 109-128. Frontières Ed. 

Donoho, D.L.; I.M. Johnstone(1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol. 81, pp. 425–455. 
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Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet 
shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen 
from a library of bases,” C.R.A.S. Paris, t. 319, Ser. I, pp. 1317–1322.

Donoho, D.L. (1995), “De-noising by soft-thresholding,” IEEE Trans. on Inf. 
Theory, 41, 3, pp. 613–627.

See Also ddencmp, wavedec, wavedec2, wdcbm, wdcbm2, wden, wbmpen, wpdencmp, wthresh
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8wenergyPurpose Energy for 1-D wavelet or wavelet packet decomposition

Syntax [Ea,Ed] = wenergy(C,L)
E = wenergy(T)

Description For a one-dimensional wavelet decomposition [C,L] (see wavedec for details), 
[Ea,Ed] = wenergy(C,L) returns Ea, which is the percentage of energy 
corresponding to the approximation and Ed, which is the vector containing the 
percentages of energy corresponding to the details. 

For a wavelet packet tree T (see wptree, wpdec, wpdec2), E = wenergy(T) 
returns a vector E, which contains the percentages of energy corresponding to 
the terminal nodes of the tree T. In this case, wenergy is a method of the wptree 
object T, which overloads the previous wenergy function.

Examples % Example 1: 1-D wavelet decomposition
%-------------------------------------
load noisbump
[C,L] = wavedec(noisbump,4,'sym4');
[Ea,Ed] = wenergy(C,L)

Ea =

   88.2860

Ed =

    2.1560    1.2286    1.4664    6.8630

% Example 2: 1-D wavelet packet decomposition
%--------------------------------------------
load noisbump
T = wpdec(noisbump,3,'sym4');
E = wenergy(T)

E =

95.0329    1.4664    0.6100    0.6408    0.5935    0.5445    0.5154    
0.5965
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8wenergy2Purpose Energy for 2-D wavelet decomposition

Syntax [Ea,Eh,Ev,Ed] = wenergy2(C,S)
[Ea,EDetail] = wenergy2(C,S)

Description For a two-dimensional wavelet decomposition [C,S] (see wavedec2 for details), 
[Ea,Eh,Ev,Ed] = wenergy2(C,S) returns Ea, which is the percentage of energy 
corresponding to the approximation, and vectors Eh, Ev, Ed, which contain the  
percentages of energy corresponding to the horizontal, vertical, and diagonal 
details, respectively.

[Ea,EDetail] = wenergy2(C,S) returns Ea, and EDetail, which is the sum of 
vectors Eh, Ev, and Ed.  

Examples load detail
[C,S] = wavedec2(X,2,'sym4');
[Ea,Eh,Ev,Ed] = wenergy2(C,S)

Ea =
   89.3520

Eh =
    1.8748    2.7360

Ev =
    1.5860    2.6042

Ed =
    0.7539    1.0932

[Ea,EDetails] = wenergy2(C,S)

Ea =
   89.3520

EDetails =
    4.2147    6.4334
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8wentropyPurpose Entropy (wavelet packet)

Syntax E = wentropy(X,T,P)
E = wentropy(X,T)

Description E = wentropy(X,T,P) returns the entropy E of the vector or matrix input X. In 
both cases, output E is a real number.

E = wentropy(X,T) is equivalent to E = wentropy(X,T,0).

T is a string containing the type of entropy and P is an optional parameter 
depending on the value of T.

Entropy Type Name (T) Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 ≤ P P is the threshold.

'sure' 0 ≤ P P is the threshold.

'norm' 1 ≤ P P is the power. 

'user' string P is a string containing the 
M-file name of your own 
entropy function, with a single 
input X.

FunName No 
constraints 
on P

FunName is any other string 
except those used for the 
previous Entropy Type Names 
listed above.
FunName contains the M-file 
name of your own entropy 
function, with X as input and P 
as additional parameter to 
your entropy function.
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Note  The 'user' option is historical and still kept for compatibility,  but it is 
obsoleted by the last option described in the table above. The FunName option 
do the same as the 'user' option and in addition gives the possibility to pass a 
parameter to your own entropy function.

Functionals verifying an additive-type property are well suited for efficient 
searching of binary-tree structures and the fundamental splitting property of 
the wavelet packets decomposition. Classical entropy-based criteria match 
these conditions and describe information-related properties for an accurate 
representation of a given signal. Entropy is a common concept in many fields, 
mainly in signal processing. The following example lists different entropy 
criteria. Many others are available and can be easily integrated. In the 
following expressions, s is the signal and (si)i the coefficients of s in an 
orthonormal basis.

The entropy E must be an additive cost function such that E(0) = 0 and

• The (nonnormalized) Shannon entropy.

  so  

with the convention 0log(0) = 0.

• The concentration in lp norm entropy with 1 ≤ p.

E2(si) = |si|
p  so  

• The “log energy” entropy.

  so  

with the convention log(0) = 0. 

E s( ) E si( )
i
∑=

E1 si( ) si
2

si
2( )log= E1 s( ) si

2
si

2( )log
i
∑–=

E2 s( ) si
p

i
∑ s p

p
= =

E3 si( ) si
2( )log= E3 s( ) si

2( )log
i
∑=
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• The threshold entropy.

E4(si) = 1 if |si| > p and 0 elsewhere so E4(s) = #{i such that |si| > p} is the 
number of time instants when the signal is greater than a threshold p. 

• The “SURE” entropy.

E5(s) = n - #{i such that 

For more information, see the section “Wavelet Packets for Compression and 
De-Noising” in Chapter 6 of the User’s Guide.

Examples % The current extension mode is zero-padding (see dwtmode).

% Generate initial signal. 
x = randn(1,200);

% Compute Shannon entropy of x. 
e = wentropy(x,'shannon')

e =
-142.7607

% Compute log energy entropy of x. 
e = wentropy(x,'log energy')
e =

-281.8975

% Compute threshold entropy of x 
% with threshold equal to 0.2. 
e = wentropy(x,'threshold',0.2)
e =

162

% Compute Sure entropy of x 
% with threshold equal to 3. 
e = wentropy(x,'sure',3)
e =
 -0.6575

si p } min si
2 p2,( )

i
∑+≤
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% Compute norm entropy of x with power equal to 1.1. 
e = wentropy(x,'norm',1.1)
e =
 160.1583

% Compute user entropy of x with a user defined 
% function: userent for example. 
% This function must be an M-file, with first line 
% of the following form: 
% 
% function e = userent(x) 
% 
% where x is a vector and e is a real number. 
% Then a new entropy is defined and can be used typing: 
% 
% e = wentropy(x,'user','userent')
%
% or more directly
%
% e = wentropy(x,'userent')

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based Algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

Donoho, D.L.; I.M. Johnstone, “Ideal de-noising in an orthonormal basis chosen 
from a library of bases,” C.R.A.S. Paris, Ser. I, t. 319, pp. 1317–1322.
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8wextendPurpose Extend vector or matrix

Syntax Y = wextend(TYPE,MODE,X,L,LOC)
Y = wextend(TYPE,MODE,X,L)

Description The valid extension types (TYPE) are listed in the table below.

TYPE Description

1, '1', '1d' or '1D' 1-D extension

2, '2', '2d' or '2D' 2-D extension

'ar' or 'addrow' Add rows

'ac' or 'addcol' Add columns
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The valid extension modes (MODE) are listed in the table below.

With TYPE = {1, '1', '1d' or '1D'}: 

• LOC = 'l' (or 'u') for left (or up) extension.

• LOC = 'r' (or 'd') for right (or down) extension.

• LOC = 'b' for extension on both sides.

• LOC = 'n' null extension.

• The default is LOC = 'b'.

• L is the length of the extension.

With TYPE = {'ar', 'addrow'}:

MODE Description

'zpd' Zero extension

'sp0' Smooth extension of order 0

'spd' (or'sp1') Smooth extension of order 1

'sym' or 'symh' Symmetric-padding (half-point): boundary 
value symmetric replication

'symw' Symmetric-padding (whole-point): boundary 
value symmetric replication

'asym' or 'asymh' Antisymmetric-padding (half-point): boundary 
value antisymmetric replication

'asymw' Antisymmetric-padding (whole-point): 
boundary value antisymmetric replication

'ppd' Periodized extension (1)

'per' Periodized extension (2):
If the signal length is odd, wextend adds an 
extra sample, equal to the last value, on the 
right and performs extension using the 'ppd' 
mode. Otherwise, 'per' reduces to 'ppd'. The 
same kind of rule stands for images.
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• LOC is a 1D extension location.

• The default is LOC = 'b'.

• L is the number of rows to add.

With TYPE = {'ac', 'addcol'}: 

• LOC is a 1D extension location.

• The default is LOC = 'b'.

• L is the number of columns to add.

With TYPE = {2, '2', '2d' or '2D'}: 

• LOC = [LOCROW,LOCCOL] where LOCROW and LOCCOL are 1D extension locations 
or 'n' (none).

• The default is LOC = 'bb'.

• L = [LROW,LCOL] where LROW is the number of rows to add and LCOL is the 
number of columns to add.

For more information on symmetric extension modes see “References”.

Examples % Original signal.
x = [1 2 3]

x =

     1     2     3

% 1-D extension length.
l = 2;

% Zero-padding extensions 1-D.
xextzpd1 = wextend('1','zpd',x,l)
xextzpd1 =

     0     0     1     2     3     0     0

xextzpd2 = wextend('1D','zpd',x,l,'b')

xextzpd2 =
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     0     0     1     2     3     0     0

% Symmetric extension 1-D.
xextsym = wextend('1D','sym',x,l)

xextsym =

     2     1     1     2     3     3     2

% Periodic extension 1-D.
xextper = wextend('1D','per',x,l)

xextper =

     3     3     1     2     3     3     1     2

% Original image.
X = [1 2 3;4 5 6]

X =
     1     2     3
     4     5     6

% 2-D extension length.
l = 2;

% Zero-padding extension 2-D.
Xextzpd = wextend(2,'zpd',X,l)

Xextzpd =
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0
     0     0     1     2     3     0     0
     0     0     4     5     6     0     0
     0     0     0     0     0     0     0
     0     0     0     0     0     0     0

% Symmetric extension 2-D.
Xextsym = wextend('2D','sym',X,l)
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Xextsym =
     5     4     4     5     6     6     5
     2     1     1     2     3     3     2
     2     1     1     2     3     3     2
     5     4     4     5     6     6     5
     5     4     4     5     6     6     5
     2     1     1     2     3     3     2

References Strang, G.; T. Nguyen (1996), Wavelets and filter banks, Wellesley- Cambridge 
Press.
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8wfbmPurpose Fractional Brownian motion synthesis

Syntax FBM = wfbm(H,L)
FBM = wfbm(H,L,'plot')
FBM = wfbm(H,L,NS,W), FBM = WFBM(H,L,W,NS)
wfbm(H,L,'plot',NS,W), WFBM(H,L,'plot',W,NS)

Description FBM = wfbm(H,L) returns a fractional Brownian motion signal FBM of the Hurst 
parameter H (0 < H < 1) and length L, following the algorithm proposed by Abry 
and Sellan.

FBM = wfbm(H,L,'plot') generates and plots the FBM signal.

FBM = wfbm(H,L,NS,W) or FBM = wfbm(H,L,W,NS) returns the FBM using NS 
reconstruction steps and the sufficiently regular orthogonal wavelet W.

wfbm(H,L,'plot',NS) or wfbm(H,L,'plot',W) or wfbm(H,L,'plot',NS,W) or 
wfbm(H,L,'plot',W,NS) generates and plots the FBM signal.

wfbm(H,L) is equivalent to WFBM(H,L,6,'db10').

wfbm(H,L,NS) is equivalent to WFBM(H,L,NS,'db10').

wfbm(H,L,W) is equivalent to WFBM(H,L,W,6).

A fractional Brownian motion (fBm) is a continuous-time Gaussian process 
depending on the Hurst parameter 0 < H < 1. It generalizes the ordinary 
Brownian motion corresponding to H = 0.5 and whose derivative is the white 
noise. The fBm is self-similar in distribution and the variance of the increments 
is given by

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

Examples According to the value of  H, the fBm exhibits for H > 0.5, long-range 
dependence and for H < 0.5, short or intermediate dependence. This example 
shows each situation using the wfbm M-file, which generates a sample path of 
this process.

% Generate fBm for H = 0.3 and H = 0.7

% Initialize the randn generator
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randn('state',1)

% Set the parameter H and the sample length
H = 0.3; lg = 1000;
% Generate and plot wavelet-based fBm for H = 0.3
fBm03 = wfbm(H,lg,'plot');

% Reset randn generator and parameter H
randn('state',1); H = 0.7;
% Generate and plot wavelet-based fBm for H = 0.7
fBm07 = wfbm(H,lg,'plot');

% The last step is equivalent to
% Define wavelet and level of decomposition
% w = ' db10'; ns = 6;
% Generate
% fBm07 = wfbm(H,lg,'plot',w,ns);
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fBm07 clearly exhibits a stronger low-frequency component and has, locally, 
less irregular behavior.

Algorithm Starting from the expression of the fBm process as a fractional integral of the 
white noise process, the idea of the algorithm is to build a biorthogonal wavelet 
depending on a given orthogonal one and adapted to the parameter H.

Then the generated sample path is obtained by the reconstruction using the 
new wavelet starting from a wavelet decomposition at a given level designed as 
follows: details coefficients are independent random Gaussian realizations and 
approximation coefficients come from a fractional ARIMA process.

This method was first proposed by Meyer and Sellan and implementation 
issues were examined by Abry and Sellan.

Nevertheless, the samples generated following this original scheme exhibit too 
many high-frequency components. To circumvent this undesirable behavior 
Bardet et al.  propose downsampling the obtained sample by a factor 10.

Two internal parameters delta = 10 (the downsampling factor) and a 
threshold prec = 1E-4, to evaluate series by truncated sums, can be modified 
by the user for extreme values of H.

100 200 300 400 500 600 700 800 900 1000
−20

−15

−10

−5

0

5
fractional Brownian motion − parameter: 0.7



wfbm

8-355

A complete overview of long-range dependence process generators is available 
in Bardet et al.

References Abry, P.; F. Sellan (1996), “The wavelet-based synthesis for the fractional 
Brownian motion proposed by F. Sellan and Y. Meyer: Remarks and fast 
implementation,” Appl. and Comp. Harmonic Anal., 3(4), pp. 377–383.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu 
(2003), “Generators of long-range dependence processes: a survey,”  Theory and 
applications of long-range dependence, Birkhäuser, pp. 579–623.

See Also wfbmesti
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8wfbmestiPurpose Parameter estimation of fractional Brownian motion

Syntax HEST = wfbmesti(X)

Description HEST = wfbmesti(X) returns a row vector HEST which contains three estimates 
of the fractal index H of the signal X supposed to come from a fractional 
Brownian motion of parameter H.

The two first estimates are based on second order discrete derivative, the 
second one is wavelet-based.

The third estimate is based on the linear regression in loglog plot, of the 
variance of detail versus level.

A fractional Brownian motion (fBm) is a continuous-time Gaussian process 
depending on the so-called Hurst parameter 0 < H < 1. It generalizes the 
ordinary Brownian motion corresponding to H = 0.5 and whose derivative is 
the white noise. The fBm is self-similar in distribution and the variance of the 
increments is given by 

Var(fBm(t)-fBm(s)) = v |t-s|^(2H)

where v is a positive constant.

This special form of the variance of the increments suggests various ways to 
estimate the parameter H. One can find in Bardet et al.  a survey of such 
methods. The wfbmesti M-file  provides three different estimates. The first 
one, due to Istas and Lang, is based on the discrete second-order derivative. 
The second one is a wavelet-based adaptation and has similar properties. The 
third one, proposed by Flandrin, estimates H using the slope of the loglog plot 
of the detail variance versus the level. A more recent extension can be found in 
Abry et al.

Examples This example shows a statistical comparison of the three estimators by a short 
Monte-Carlo study.

% Initialize the randn generator
randn('state',1)

% Set parameter H to 0.6 and sample length
H = 0.6; lg = 10000;
% Generate 100 wavelet-based fBm realizations for H = 0.6
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% and compute the three estimates for each of them
n = 100; Hest = zeros(n,3);
for i = 1:n

fBm06 = wfbm(H,lg);
Hest(i,:) = wfbmesti(fBm06);

end

% Compare empirical distributions
subplot(311), hist(Hest(:,1)); 
title('Discrete second derivative estimator DSOD')
subplot(312), hist(Hest(:,2)); 
title('Wavelet version of DSOD') 
subplot(313), hist(Hest(:,3)); 
title('Wavelet details regression estimator')
xlabel('True value of the parameter H = 0.6')

For these experimental conditions, the two first methods give similar results 
with smaller dispersion than the third one. The third one is clearly slightly 
biased and has greater dispersion. 

These experimental results depend on H and on the various experimental 
conditions. For a complete study, see Bardet et al.
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References Abry, P.; P. Flandrin, M.S. Taqqu, D. Veitch (2003), “Self-similarity and 
long-range dependence through the wavelet lens,” Theory and applications of 
long-range dependence, Birkhäuser, pp. 527–556.

Bardet, J.-M.; G. Lang, G. Oppenheim, A. Philippe, S. Stoev, M.S. Taqqu 
(2003), “Semi-parametric estimation of the long-range dependence parameter: 
a survey,” Theory and applications of long-range dependence, Birkhäuser, 
pp. 557–577.

Flandrin, P. (1992), “Wavelet analysis and synthesis of fractional Brownian 
motion,” IEEE Trans. on Inf. Th., 38, pp. 910–917.

Istas, J.; G. Lang (1994), “Quadratic variations and estimation of the local 
Hölder index of a Gaussian process,” Ann. Inst. Poincaré, 33, pp. 407–436.

See Also wfbm
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8wfiltersPurpose Wavelet filters

Syntax [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname')
[F1,F2] = wfilters('wname','type')

Description [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters('wname') computes four filters 
associated with the orthogonal or biorthogonal wavelet named in the string 
'wname'.

The four output filters are

• Lo_D, the decomposition low-pass filter

• Hi_D, the decomposition high-pass filter

• Lo_R, the reconstruction low-pass filter

• Hi_R, the reconstruction high-pass filter

Available orthogonal or biorthogonal wavelet names 'wname' are listed in the 
table below.

Wavelet Families Wavelets

Daubechies 'db1' or 'haar', 'db2', ... ,'db10', ... , 
'db45'

Coiflets 'coif1', ... , 'coif5'

Symlets 'sym2', ... , 'sym8', ... ,'sym45'

Discrete Meyer 'dmey'

Biorthogonal 'bior1.1', 'bior1.3', 'bior1.5'
'bior2.2', 'bior2.4', 'bior2.6', 'bior2.8'
'bior3.1', 'bior3.3', 'bior3.5', 'bior3.7'
'bior3.9', 'bior4.4', 'bior5.5', 'bior6.8'

Reverse Biorthogonal 'rbio1.1', 'rbio1.3', 'rbio1.5'
'rbio2.2', 'rbio2.4', 'rbio2.6', 'rbio2.8'
'rbio3.1', 'rbio3.3', 'rbio3.5', 'rbio3.7'
'rbio3.9', 'rbio4.4', 'rbio5.5', 'rbio6.8'
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[F1,F2] = wfilters('wname','type') returns the following filters:

Examples % Set wavelet name. 
wname = 'db5';

% Compute the four filters associated with wavelet name given 
% by the input string wname. 
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname); 
subplot(221); stem(Lo_D); 
title('Decomposition low-pass filter'); 
subplot(222); stem(Hi_D); 
title('Decomposition high-pass filter'); 
subplot(223); stem(Lo_R); 
title('Reconstruction low-pass filter'); 
subplot(224); stem(Hi_R); 
title('Reconstruction high-pass filter'); 
xlabel('The four filters for db5')

% Editing some graphical properties,
% the following figure is generated.

Lo_D and Hi_D (Decomposition filters) If 'type' = 'd' 

Lo_R and Hi_R (Reconstruction filters) If 'type' = 'r'

Lo_D and Lo_R (Low-pass filters) If 'type' = 'l' 

Hi_D and Hi_R (High-pass filters) If 'type' = 'h'
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References Daubechies, I. (1992), Ten lectures on wavelets, CBMS-NSF conference series 
in applied mathematics. SIAM Ed.

Mallat, S. (1989), “A theory for multiresolution signal decomposition: the 
wavelet representation,” IEEE Pattern Anal. and Machine Intell., vol. 11, no. 7, 
pp. 674–693.

See Also biorfilt, orthfilt, waveinfo
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8wfusimgPurpose Fusion of two images

Syntax XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH)
[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH)
wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH,FLAGPLOT)

Description The principle of image fusion using wavelets is to merge the wavelet 
decompositions of the two original images using fusion methods applied to 
approximations coefficients and details coefficients (see Zeeuw and Misiti et 
al.).

XFUS = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH) returns the fused  
image XFUS obtained by fusion of the two original images X1 and X2. Each fusion 
method, defined by AFUSMETH and DFUSMETH, merges in a specific way detailed 
below, the decompositions of X1 and X2, at level LEVEL and using wavelet WNAME.

AFUSMETH and DFUSMETH define the fusion method for approximations and 
details, respectively.

[XFUS,TXFUS,TX1,TX2] = wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH) 
returns, in addition to matrix XFUS, three objects of the class WDECTREE 
associated with XFUS, X1, and X2 respectively (see @WDECTREE). 
wfusimg(X1,X2,WNAME,LEVEL,AFUSMETH,DFUSMETH,FLAGPLOT) also plots the 
objects TXFUS, TX1, and TX2.

Fusmeth denotes AFUSMETH or DFUSMETH. Available fusion methods are

• Simple — Fusmeth can be 'max', 'min', 'mean', 'img1', 'img2' or 'rand',  
which merges the two approximations or details structures obtained from X1 
and X2 elementwise by taking the maximum, the minimum, the mean, the 
first element, the second element, or a randomly chosen element

• Parameter-dependent — Fusmeth is of the following form

Fusmeth = struct('name',nameMETH,'param',paramMETH) 

where nameMETH can be

'linear'

'UD_fusion' Up-down fusion

'DU_fusion' Down-up fusion
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For the description of these options and the paramMETH parameter, see wfusmat.

Remarks X1 and X2 must be of same size (see wextend to resize images) and represent 
indexed images or truecolor images, which are m-by-n matrices or m-by-n-by-3 
arrays, respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples The following three examples examine the process of image fusion

• The first example merges two different images leading to a new image

• The second example restores an image from two fuzzy versions of an original 
image. 

• The third example shows how to make an image fusion using a a user defined 
fusion method.

% Example 1: Fusion of two different images

% Load two original images: a mask and a bust
load mask; X1 = X;
load bust; X2 = X;

% Merge the two images from wavelet decompositions at level 5
% using db2 by taking two different fusion methods

% fusion by taking the mean for both approximations and details
XFUSmean = wfusimg(X1,X2,'db2',5,'mean','mean');

% fusion by taking the maximum for approximations and the 
% minimum for the details
XFUSmaxmin = wfusimg(X1,X2,'db2',5,'max','min');

% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square, title('Mask')

'RL_fusion' Right-left fusion

'UserDEF' User-defined fusion
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subplot(222), image(X2), axis square, title('Bust')
subplot(223), image(XFUSmean), axis square, 
title('Synthesized image, mean-mean')
subplot(224), image(XFUSmaxmin), axis square, 
title('Synthesized image, max-min')

% Example 2: Restoration by fusion of fuzzy images

% Load two fuzzy versions of an original image
load cathe_1; X1 = X;
load cathe_2; X2 = X;

% Merge the two images from wavelet decompositions at level 5
% using sym4 by taking the maximum of absolute value of the 
% coefficients for both approximations and details
XFUS = wfusimg(X1,X2,'sym4',5,'max','max');

% Plot original and synthesized images
colormap(map);
subplot(221), image(X1), axis square, 
title('Catherine 1')
subplot(222), image(X2), axis square, 
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title('Catherine 2')
subplot(223), image(XFUS), axis square, 
title('Synthesized image')

% The synthesized image is a restored version of good 
% quality of the common underlying original image.

% Example 3: Fusion using a user defined fusion method.
% This example calls a user fusion method defined by the 
% file myfus_FUN.m which is listed below at the end of 
% the example.
 
% load two images of the same size.
load mask; A = X;
load bust; B = X;
 
% Define the fusion method and call the fusion function
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Fus_Method = struct('name','userDEF','param','myfus_FUN');
C = wfusmat(A,B,Fus_Method);
 
figure;
colormap(pink(220))
subplot(1,3,1), image(A), title('Original Image 1'), axis square
subplot(1,3,2), image(C), title('Fusioned Image'), axis square
subplot(1,3,3), image(B), title('Original Image 2'), axis square

%*******************************
% User defined fusion method.  *
%*******************************
 function C = myfus_FUN(A,B)

D = logical(triu(ones(size(A))));  t = 0.3;
C = A;
C(D)  = t*A(D)+(1-t)*B(D);
C(~D) = t*B(~D)+(1-t)*A(~D);

References Zeeuw, P.M. (1998), “Wavelet and image fusion,” CWI, Amsterdam, March 
1998, http:/www.cwi.nl/~pauldz/

Misiti, M.; Y. Misiti, G. Oppenheim, J.-M. Poggi (2003), “Les ondelettes et leurs 
applications,” Hermes.

See Also wfusmat, wextend
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8wfusmatPurpose Fusion of two matrices or arrays

Syntax C = wfusmat(A,B,METHOD)
[C,D] = wfusmat(A,B,METHOD)

Description C = wfusmat(A,B,METHOD) returns the fused matrix C obtained from the 
matrices A and B using the fusion method defined by METHOD.

The matrices A and B must be of the same size. The output matrix C is of the 
same size as A and B.

Available fusion methods are

•  Simple, where METHOD is

- 'max'  : D = abs(A) ≥ abs(B) ; C = A(D) + B(~D)
- 'min'  : D = abs(A) ≤ abs(B) ; C = A(D) + B(~D)
- 'mean' : C = (A+B) / 2 ; D = ones(size(A))

- 'rand' : C = A(D) + B(~D); D is a Boolean random matrix

- 'img1' : C = A

- 'img2' : C = B

• Parameter-dependent, where METHOD is of the following form:

METHOD = struct('name',nameMETH,'param',paramMETH)

where nameMETH can be

- 'linear' : C = A*paramMETH + B*(1-paramMETH),

where 0 £ paramMETH ≤ 1   

- 'UD_fusion': Up-down fusion, with paramMETH ≥ 0
x = linspace(0,1,size(A,1));
P = x.^paramMETH;

Then each row of C is computed with
C(i,:) = A(i,:)*(1-P(i)) + B(i,:)*P(i); 
So C(1,:) = A(1,:) and C(end,:) = A(end,:) 

- 'DU_fusion': Down-up fusion

- 'LR_fusion': Left-right fusion (columnwise fusion)

- 'RL_fusion': Right-left fusion (columnwise fusion)
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- 'UserDEF': User-defined fusion, paramMETH is a string 'userFUNCTION' 
containing a function name such that  C = userFUNCTION(A,B).

In addition, [C,D] = wfusmat(A,B,METHOD) returns the Boolean matrix D when 
defined, or an empty matrix otherwise.
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8wkeepPurpose Keep part of vector or matrix

Syntax Y = wkeep(X,L,OPT)
Y = wkeep(X,L)

Description wkeep is a general utility.

For a vector, Y = wkeep(X,L,OPT) extracts the vector Y from the vector X. The 
length of Y is L.

If OPT = 'c' ('l', 'r', respectively), Y is the central (left, right, respectively) 
part of X. 

Y = wkeep(X,L,FIRST) returns the vector X(FIRST:FIRST+L-1).

Y = wkeep(X,L) is equivalent to Y = wkeep(X,L,'c'). 

For a matrix, Y = wkeep(X,S) extracts the central part of the matrix X. The size 
of Y is S.

Y = wkeep(X,S,[FIRSTR FIRSTC]) extracts the submatrix of matrix X, of size 
S and starting from X(FIRSTR,FIRSTC).

Examples % For a vector. 
x = 1:10;
y = wkeep(x,6,'c')
y =

3 4 5 6 7 8

y = wkeep(x,6)
y =

3 4 5 6 7 8

y = wkeep(x,7,'c')
y =

2 3 4 5 6 7 8
y = wkeep(x,6,'l')
y =

1 2 3 4 5 6
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y = wkeep(x,6,'r')
y =

5 6 7 8 9 10

% For a matrix. 
x = magic(5)
x =

17 24 1 8 15 
23 5 7 14 16 
4 6 13 20 22 

10 12 19 21 3 
11 18 25 2 9

y = wkeep(x,[3 2])
y =

5 7
6 13
12  19
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8wmaxlevPurpose Maximum wavelet decomposition level

Syntax L = wmaxlev(S,'wname') 

Description wmaxlev is a one- or two-dimensional wavelet or wavelet packets oriented 
function. 

wmaxlev can help you avoid unreasonable maximum level values. 
L = wmaxlev(S,'wname') returns the maximum level decomposition of signal 
or image of size S using the wavelet named in the string 'wname' (see wfilters 
for more information). 

wmaxlev gives the maximum allowed level decomposition, but in general, a 
smaller value is taken. 

Usual values are 5 for the one-dimensional case, and 3 for the two-dimensional 
case.

Examples % For a 1-D signal. 
s = 2^10; 
w = 'db1';

% Compute maximum level decomposition. 
% The rule is the last level for which at least 
% one coefficient is correct. 
l = wmaxlev(s,w)

l =
10

% Change wavelet. 
w = 'db7';

% Compute maximum level decomposition. 
l = wmaxlev(s,w)

l =
6
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% For a 2-D signal. 
s = [2^9 2^7]; 
w = 'db1';

% Compute maximum level decomposition. 
l = wmaxlev(s,w)

l =
7

% which is the same as: 
l = wmaxlev(min(s),w)

l =
7

% Change wavelet. 
w = 'db7';

% Compute maximum level decomposition. 
l = wmaxlev(s,w)

l =
3

See Also wavedec, wavedec2, wpdec, wpdec2
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8wmspcaPurpose Multiscale Principal Component Analysis

Syntax [X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,NPC)
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)
[...] = wmspca(DEC,NPC)

Description [X_SIM,QUAL,NPC,DEC_SIM,PCA_Params] = wmspca(X,LEVEL,WNAME,NPC) or 
[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC)  returns a simplified 
version X_SIM of the input matrix X obtained from the wavelet-based multiscale 
Principal Component Analysis (PCA).

The input matrix X contains P signals of length N stored columnwise (N > P).

Wavelet Decomposition Parameters
The wavelet decomposition is performed using the decomposition level LEVEL  
and the wavelet WNAME. 

EXTMODE is the extended mode for the DWT (See dwtmode).

If a decomposition DEC obtained using mdwtdec is available,  you can use 

[...] = wmspca(DEC,NPC) instead of 

[...] = wmspca(X,LEVEL,WNAME,'mode',EXTMODE,NPC).

Principal Components Parameter: NPC
If NPC is a vector, then it must be of length LEVEL+2. It contains the number of 
retained principal components for each PCA performed:

• NPC(d) is the number of retained noncentered principal components for 
details at level d, for  1 <= d <= LEVEL.

• NPC(LEVEL+1) is the number of retained non-centered principal components 
for approximations at level LEVEL.

• NPC(LEVEL+2) is the number of retained principal components for final PCA 
after wavelet reconstruction.

  NPC must be such that 0 <= NPC(d) <= P for 1 <= d <= LEVEL+2.

If NPC = 'kais' (respectively, 'heur'), then the number of retained principal 
components is selected automatically using Kaiser’s rule (or the heuristic rule).
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• Kaiser’s rule keeps the components associated with eigenvalues greater the 
mean of all eigenvalues.

• The heuristic rule keeps the components associated with eigenvalues greater 
than 0.05 times the sum of all eigenvalues.

If NPC = 'nodet', then the details are “killed” and all the approximations are 
retained.

Output Parameters
X_SIM is a simplified version of the matrix X.

QUAL is a vector of length P containing the quality of column reconstructions 
given by the relative mean square errors in percent.

NPC is the vector of selected numbers of retained principal components.

DEC_SIM is the wavelet decomposition of X_SIM. 

PCA_Params is a structure array of length LEVEL+2 such that:

•  PCA_Params(d).pc is a P-by-P matrix of principal components. 

The columns are stored in descending order of the variances. 

•  PCA_Params(d).variances is the principal component variances vector. 

•  PCA_Params(d).npc = NPC
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Examples %  Load a multivariate signal x.
load ex4mwden

%  Set the wavelet parameters.
level = 5;
wname = 'sym4';

% Set the PCA parameters to select the number 
% of retained principal components automatically
%  by Kaiser's rule.

npc = 'kais';

% Perform a first multiscale PCA.
[x_sim, qual, npc] = wmspca(x,level,wname,npc); 

% Display the original and simplified signals. 
kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); 
    title(['Simplified signal ',num2str(i)])
    kp = kp + 2;
end
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%  The results from a compression perspective are good: the 
%  quality of column reconstructions are close to 100%.

qual

qual =

   98.0545   93.2807   97.1172   98.8603

% The output argument npc gives the number 
% of retained principal components.

npc =

npc =
     1     1     1     1     1     2     2
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% The results can be improved by suppressing noise, 
% by killing the details at levels 1 to 3.

npc(1:3) = zeros(1,3);

% Perform again multiscale PCA.

[x_sim, qual, npc] = wmspca(x,level,wname,npc); 
 
% Display the original and final simplified signals. 
% Use these plotting commands to generate the figure.

kp = 0;
for i = 1:4 
    subplot(4,2,kp+1), plot(x (:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,2,kp+2), plot(x_sim(:,i)); 
    title(['Simplified signal ',num2str(i)])
    kp = kp + 2;
end
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Algorithm The multiscale principal components generalizes the usual PCA of a 
multivariate signal seen as a matrix by performing simultaneously a PCA on 
the matrices of details of different levels. In addition, a PCA is performed also 
on the coarser approximation coefficients matrix in the wavelet domain as well 
as on the final reconstructed matrix. By selecting conveniently the numbers of 
retained principal components, interesting simplified signals can be 
reconstructed.

References Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), “Multivariate de-noising using 
wavelets and principal component analysis,” Computational Statistics & Data 
Analysis, 50, pp. 2381–2398.

Bakshi, B. (1998), “Multiscale PCA with application to MSPC monitoring,” 
AIChE J., 44, pp. 1596–1610.

See Also wmulden
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8wmuldenPurpose Wavelet multivariate de-noising

Syntax [X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ...
  wmulden(X,LEVEL,WNAME,NPC_APP,NPC_FIN,TPTR,SORH)
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...)
[DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN)
[X_DEN,NPC,DEC_DEN,PCA_Params] = ...
   wmulden('execute',DEC,PCA_Params)
[...] = wmulden('execute',DEC,PCA_Params,TPTR,SORH) 

Description [X_DEN,NPC,NESTCOV,DEC_DEN,PCA_Params,DEN_Params] = ...
  wmulden(X,LEVEL,WNAME,NPC_APP,NPC_FIN,TPTR,SORH) or 
[...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP,...)  returns a 
de-noised version X_DEN of the input matrix X. The strategy combines 
univariate wavelet de-noising in the basis where the estimated noise 
covariance matrix is diagonal with noncentered Principal Component Analysis 
(PCA) on approximations in the wavelet domain or with final PCA.

The input matrix X contains P signals of length N stored columnwise where 
N > P.

Wavelet Decomposition Parameters
The wavelet decomposition is performed using the decomposition level LEVEL  
and the wavelet WNAME. 

EXTMODE is the extended mode for the DWT (See dwtmode).

If a decomposition DEC obtained using mdwtdec is available,  you can use

 [...] = wmulden(DEC,NPC_APP) instead of 

 [...] = wmulden(X,LEVEL,WNAME,'mode',EXTMODE,NPC_APP).

Principal Components Parameters: NPC_APP and NPC_FIN
The input selection methods NPC_APP and NPC_FIN define the way to select 
principal components for approximations at level LEVEL in the wavelet domain 
and for final PCA after wavelet reconstruction, respectively.
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If NPC_APP (or NPC_FIN) is an integer, it contains the number of retained 
principal components for approximations at level LEVEL (or for final PCA after 
wavelet reconstruction).

NPC_XXX must be such that 0 <= NPC_XXX <= P

NPC_APP or NPC_FIN = 'kais' (or 'heur')  selects the number of retained 
principal components using Kaiser’s rule (or the heuristic rule) automatically.

• Kaiser’s rule keeps the components associated with eigenvalues greater than  
the mean of all eigenvalues.

• Heuristic rule keeps the components associated with eigenvalues greater 
than 0.05 times the sum of all eigenvalues.

NPC_APP or NPC_FIN = 'none' is equivalent to NPC_APP or NPC_FIN = P.

De-noising Parameters: TPTR and SORH
The default values for the de-noising parameters TPTR and SORH are: 

TPTR = 'sqtwolog' and SORH = 's'

•  Valid values for TPTR are
'rigsure', 'heursure', 'sqtwolog', 'minimaxi',
'penalhi', 'penalme', 'penallo'

•  Valid values for SORH are: 

's' (soft) or 'h' (hard)

For additional information, ssee wden and wbmpen.

Output Parameters
X_DEN is a de-noised version of the input matrix X.

NPC is the vector of selected numbers of retained principal components.

NESTCOV is the estimated noise covariance matrix obtained using the minimum 
covariance determinant (MCD) estimator.

DEC_DEN is the wavelet decomposition of X_DEN. 

PCA_Params is a structure such that:



wmulden

8-381

PCA_Params.NEST = {pc_NEST,var_NEST,NESTCOV}
PCA_Params.APP  = {pc_APP,var_APP,npc_APP}
PCA_Params.FIN  = {pc_FIN,var_FIN,npc_FIN}

where: 

• pc_XXX is a P-by-P matrix of principal components.

The columns are stored in descending order of the variances.

• var_XXX is the principal component variances vector. 

• NESTCOV is the covariance matrix estimate for detail at level 1.

DEN_Params is a structure such that:

• DEN_Params.thrVAL is a vector of length LEVEL which contains the threshold 
values for each level.

• DEN_Params.thrMETH is a string containing the name of the de-noising 
method (TPTR).

• DEN_Params.thrTYPE  is a character variable containing the type of the 
thresholding (SORH).

Special Cases

[DEC,PCA_Params] = wmulden('estimate',DEC,NPC_APP,NPC_FIN)  returns 
the wavelet decomposition DEC and the Principal Components Estimates 
PCA_Params.

[X_DEN,NPC,DEC_DEN,PCA_Params] = wmulden('execute',DEC,PCA_Params)
or [...] = wmulden('execute',DEC,PCA_Params,TPTR,SORH)  uses the   
Principal Components Estimates PCA_Params previously computed.

The input value DEC can be replaced by X, LEVEL, and WNAME.

Examples %  Load a multivariate signal x together with
%  the original signals (x_orig) and true noise 
%  covariance matrix (covar). 

load ex4mwden

%  Set the de-noising method parameters. 
level = 5;
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wname = 'sym4';
tptr = 'sqtwolog';
sorh = 's';

% Set the PCA parameters to select the number of
% retained principal components automatically by
% Kaiser's rule.

npc_app = 'kais';
npc_fin = 'kais';

% Perform multivariate de-noising.
[x_den, npc, nestco] = wmulden(x, level, wname, npc_app, ... 

npc_fin, tptr, sorh);

% Display the original and de-noised signals. 
kp = 0;
for i = 1:4 
    subplot(4,3,kp+1), plot(x_orig(:,i)); 
    title(['Original signal ',num2str(i)])
    subplot(4,3,kp+2), plot(x(:,i)); 
    title(['Observed signal ',num2str(i)])
    subplot(4,3,kp+3), plot(x_den(:,i)); 
    title(['De-noised signal ',num2str(i)])
    kp = kp + 3;
end
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% The results are good: the first function, which is 
% irregular, is correctly recovered while the second 
% function, more regular, is well de-noised.

% The second output argument gives the numbers 
% of retained principal components for PCA for 
% approximations and for final PCA.

npc

npc = 

     2     2

% The third output argument contains the estimated 
% noise covariance matrix using the MCD based 
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% on the matrix of finest details.

nestco

nestco =

    1.0784    0.8333    0.6878    0.8141
    0.8333    1.0025    0.5275    0.6814
    0.6878    0.5275    1.0501    0.7734
    0.8141    0.6814    0.7734    1.0967

% The estimation is satisfactory since the values are close 
% to the true values given by covar.

covar 

covar =

    1.0000    0.8000    0.6000    0.7000
    0.8000    1.0000    0.5000    0.6000
    0.6000    0.5000    1.0000    0.7000
    0.7000    0.6000    0.7000    1.0000

Algorithm The multivariate de-noising procedure is a generalization of the 
one-dimensional strategy. It combines univariate wavelet de-noising in the 
basis where the estimated noise covariance matrix is diagonal and 
non-centered Principal Component Analysis (PCA) on approximations in the 
wavelet domain or with final PCA.

The robust estimate of the noise covariance matrix given by the minimum 
covariance determinant estimator based on the matrix of finest details. 

References Aminghafari, M.; Cheze, N.; Poggi, J-M. (2006), “Multivariate de-noising using 
wavelets and principal component analysis,” Computational Statistics & Data 
Analysis, 50, pp. 2381–2398.

Rousseeuw, P.; Van Driessen, K. (1999), “A fast algorithm for the minimum 
covariance determinant estimator,” Technometrics, 41, pp. 212–223. 

See Also wmspca
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8wnoisePurpose Noisy wavelet test data

Syntax X = wnoise(FUN,N)
[X,XN] = wnoise(FUN,N,SQRT_SNR)
[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT)

Description X = wnoise(FUN,N) returns values of the test signal given by FUN, on a 2N grid 
of [0,1].

[X,XN] = wnoise(FUN,N,SQRT_SNR) returns a test vector X as above, rescaled 
such that std(X) = SQRT_SNR. The returned vector XN contains the same test 
vector corrupted by additive Gaussian white noise N(0,1). Then, XN has a 
signal-to-noise ratio of SNR = (SQRT_SNR)2. 

[X,XN] = wnoise(FUN,N,SQRT_SNR,INIT) returns previous vectors X and XN, 
but the generator seed is set to INIT value. 

The six functions below are due to Donoho and Johnstone (See “References”).

Examples % Generate 2^10 samples of 'Heavy sine' (item 3). 
x = wnoise(3,10); 

% Generate 2^10 samples of 'Doppler' (item 4) and of
% noisy 'Doppler' with a square root of signal-to-noise
% ratio equal to 7. 
[x,noisyx] = wnoise(4,10,7);

% To introduce your own rand seed, a fourth 
% argument is allowed: 
init = 2055415866; 
[x,noisyx] = wnoise(4,10,7,init);

FUN = 1 or 'blocks'

FUN = 2 or 'bumps'

FUN = 3 or 'heavy sine'

FUN = 4 or 'doppler'

FUN = 5 or 'quadchirp'

FUN = 6 or 'mishmash'
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% Plot all the test functions. 
ind = linspace(0,1,2^10); 
for i = 1:6 

x = wnoise(i,10); 
subplot(6,1,i), plot(ind,x) 

end

% Editing some graphical properties,
% the following figure is generated.

References Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol. 81, pp. 425–455.

Donoho, D.L.; I.M. Johnstone (1995), “Adapting to unknown smoothness via 
wavelet shrinkage via wavelet shrinkage,” JASA, vol. 90, 432, pp. 1200–1224. 

See Also wden
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8wnoisestPurpose Estimate noise of 1-D wavelet coefficients

Syntax STDC = wnoisest(C,L,S) 

Description STDC = wnoisest(C,L,S) returns estimates of the detail coefficients’ standard 
deviation for levels contained in the input vector S. [C,L] is the input wavelet 
decomposition structure (see wavedec for more information). 

If C is a one dimensional cell array, STDC = wnoisest(C) returns a vector such 
that STDC(k) is an estimate of the standard deviation of C{k}.

If C is a numeric array, STDC = wnoisest(C) returns a vector such that STDC(k) 
is an estimate of the standard deviation of C(k,:).

The estimator used is Median Absolute Deviation / 0.6745, well suited for zero 
mean Gaussian white noise in the de-noising one-dimensional model (see 
thselect for more information).

Examples % The current extension mode is zero-padding (see dwtmode).

% Generate Gaussian white noise. 
init = 2055415866; randn('seed',init); 
x = randn(1,1000);

% Decompose x at level 2 using db3 wavelet. 
[c,l] = wavedec(x,2,'db3');

% Estimate standard deviation of coefficients 
% at each level 1 and 2. 
% Since x is a Gaussian white noise with unit 
% variance, estimates must be close to 1. 
wnoisest(c,l,1:2)

ans =
1.0111 1.0763
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% Now suppose that x contains 10 outliers. 
ind = 50:50:500;
x(ind) = 100 * ones(size(ind));

% Decompose x at level 1 using db3 wavelet. 
[ca,cd] = dwt(x,'db3');

% Ordinary estimate of cd standard deviation 
% overestimates noise level. 
std(cd)

ans =
8.0206

% Robust estimate of cd standard deviation 
% remains close to 1 the noise level. 
median(abs(cd))/0.6745

ans =
1.0540

Limitations This procedure is well suited for Gaussian white noise.

References Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol 81, pp. 425–455. 

Donoho, D.L.; I.M. Johnstone (1995), “Adapting to unknown smoothness via 
wavelet shrinkage via wavelet shrinkage,” JASA, vol 90, 432, pp. 1200–1224. 

See Also thselect, wavedec, wden
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8wp2wtreePurpose Extract wavelet tree from wavelet packet tree

Syntax T = wp2wtree(T) 

Description wp2wtree is a one- or two-dimensional wavelet packet analysis function. 

T = wp2wtree(T) computes the modified wavelet packet tree T corresponding 
to the wavelet decomposition tree.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets 
% using shannon entropy. 
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)

% Compute wavelet tree. 
wt = wp2wtree(wpt);

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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% Plot wavelet tree wt. 
plot(wt)

See Also wpdec, wpdec2
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8wpbmpenPurpose Penalized threshold for wavelet packet de-noising

Syntax THR = wpbmpen(T,SIGMA,ALPHA)
THR = wpbmpen(T,SIGMA,ALPHA,ARG)

Description THR = wpbmpen(T,SIGMA,ALPHA) returns a global threshold THR for de-noising. 
THR is obtained by a wavelet packet coefficients selection rule using a 
penalization method provided by Birge-Massart.

T is a wavelet packet tree corresponding to the wavelet packet decomposition 
of the signal or image to be de-noised. 

SIGMA is the standard deviation of the zero mean Gaussian white noise in the 
de-noising model (see wnoisest for more information).

ALPHA is a tuning parameter for the penalty term. It must be a real number 
greater than 1. The sparsity of the wavelet packet representation of the 
de-noised signal or image grows with ALPHA. Typically ALPHA = 2.

THR minimizes the penalized criterion given by 

let t* be the minimizer of 

crit(t) = -sum(c(k)^2,k≤t) + 2*SIGMA^2*t*(ALPHA + log(n/t)) 

where c(k) are the wavelet packet coefficients sorted in decreasing order of 
their absolute value and n is the number of coefficients, then THR = c(t*) .

wpbmpen(T,SIGMA,ALPHA,ARG) computes the global threshold and, in addition, 
plots three curves: 

• 2*SIGMA^2*t*(ALPHA + log(n/t))

• sum(c(k)^2,k£t)

• crit(t)

Examples % Example 1: Signal de-noising.
% Load noisy chirp signal.
load noischir; x = noischir;
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% Perform a wavelet packet decomposition of the signal
% at level 5 using sym6.
wname = 'sym6'; lev = 5;
tree = wpdec(x,lev,wname);

% Estimate the noise standard deviation from the
% detail coefficients at level 1,
% corresponding to the node index 2.
det1 = wpcoef(tree,2);
sigma = median(abs(det1))/0.6745;

% Use wpbmpen for selecting global threshold  
% for signal de-noising, using the recommended parameter.
alpha = 2;
thr = wpbmpen(tree,sigma,alpha)

thr =

    4.5740

% Use wpdencmp for de-noising the signal using the above
% threshold with soft thresholding and keeping the approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and de-noised signals.
figure(1)
subplot(211), plot(x),
title('Original signal')
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subplot(212), plot(xd)
title('De-noised signal')

% Example 2: Image de-noising.
% Load original image.
load noiswom; 
nbc = size(map,1);

% Perform a wavelet packet decomposition of the image
% at level 3 using coif2.
wname = 'coif2'; lev = 3;
tree = wpdec2(X,lev,wname);
      
% Estimate the noise standard deviation from the
% detail coefficients at level 1.
det1 = [wpcoef(tree,2) wpcoef(tree,3) wpcoef(tree,4)];
sigma = median(abs(det1(:)))/0.6745;

% Use wpbmpen for selecting global threshold  
% for image de-noising.
alpha = 1.1;
thr = wpbmpen(tree,sigma,alpha)
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thr =

   38.5125

% Use wpdencmp for de-noising the image using the above
% thresholds with soft thresholding and keeping the approximation.
keepapp = 1;
xd = wpdencmp(tree,'s','nobest',thr,keepapp);

% Plot original and de-noised images.
figure(2)
colormap(pink(nbc));
subplot(221), image(wcodemat(X,nbc))
title('Original image')
subplot(222), image(wcodemat(xd,nbc))
title('De-noised image')

See Also wbmpen, wden, wdencmp, wpdencmp
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8wpcoefPurpose Wavelet packet coefficients

Syntax X = wpcoef(T,N)
X = wpcoef(T)

Description wpcoef is a one- or two-dimensional wavelet packet analysis function.

X = wpcoef(T,N) returns the coefficients associated with the node N of the 
wavelet packet tree T. If N doesn’t exist, X = [ ]; 

X = wpcoef(T) is equivalent to X = wpcoef(T,0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

figure(1); subplot(211); 
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets 
% using Shannon entropy. 
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)

% Read packet (2,1) coefficients. 

(1,0) (1,1)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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cfs = wpcoef(wpt,[2 1]);

figure(1); subplot(212); 
plot(cfs); title('Packet (2,1) coefficients');

See Also wpdec, wpdec2
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8wpcutreePurpose Cut wavelet packet tree

Syntax T = wpcutree(T,L)
[T,RN] = wpcutree(T,L)

Description wpcutree is a one- or two-dimensional wavelet packet analysis function.

T = wpcutree(T,L) cuts the tree T at level L. 

[T,RN] = wpcutree(T,L) returns the same arguments as above and, in 
addition, the vector RN contains the indices of the reconstructed nodes.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy.
wpt = wpdec(x,3,'db1');

% Plot wavelet packet tree wpt. 
plot(wpt)

% Cut wavelet packet tree at level 2. 
nwpt = wpcutree(wpt,2);
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(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

(0,0)
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% Plot new wavelet packet tree nwpt. 
plot(nwpt)

See Also wpdec, wpdec2
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8wpdecPurpose Wavelet packet decomposition 1-D

Syntax T = wpdec(X,N,'wname',E,P)
T = wpdec(X,N,'wname')

Description wpdec is a one-dimensional wavelet packet analysis function. 

T = wpdec(X,N,'wname',E,P) returns a wavelet packet tree T corresponding 
to the wavelet packet decomposition of the vector X at level N, with a particular 
wavelet ('wname', see wfilters for more information).

T = wpdec(X,N,'wname') is equivalent to 
T = wpdec(X,N,'wname','shannon').

E is a string containing the type of entropy and P is an optional parameter 
depending on the value of T (see wentropy for more information).

Entropy Type Name 
(E)

Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 ≤ P P is the threshold.

'sure' 0 ≤ P P is the threshold.

'norm' 1 ≤ P P is the power. 

'user' string P is a string containing the M-file 
name of your own entropy 
function, with a single input X.

FunName No 
constraints 
on P

FunName is any other string except 
those used for the previous 
Entropy Type Names listed above.
FunName contains the M-file name 
of your own entropy function, with 
X as input and P as additional 
parameter to your entropy 
function.
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Note  The 'user' option is historical and still kept for compatibility,  but it is 
obsoleted by the last option described in the table above. The FunName option 
do the same as the 'user' option and in addition gives the possibility to pass a 
parameter to your own entropy function.

The wavelet packet method is a generalization of wavelet decomposition that 
offers a richer signal analysis. Wavelet packet atoms are waveforms indexed by 
three naturally interpreted parameters: position and scale as in wavelet 
decomposition, and frequency.

For a given orthogonal wavelet function, a library of wavelet packets bases is 
generated. Each of these bases offers a particular way of coding signals, 
preserving global energy and reconstructing exact features. The wavelet 
packets can then be used for numerous expansions of a given signal.

Simple and efficient algorithms exist for both wavelet packets decomposition 
and optimal decomposition selection. Adaptive filtering algorithms with direct 
applications in optimal signal coding and data compression can then be 
produced.

In the orthogonal wavelet decomposition procedure, the generic step splits the 
approximation coefficients into two parts. After splitting we obtain a vector of 
approximation coefficients and a vector of detail coefficients, both at a coarser 
scale. The information lost between two successive approximations is captured 
in the detail coefficients. The next step consists in splitting the new 
approximation coefficient vector; successive details are never re-analyzed.

In the corresponding wavelet packets situation, each detail coefficient vector is 
also decomposed into two parts using the same approach as in approximation 
vector splitting. This offers the richest analysis: the complete binary tree is 
produced in the one-dimensional case or a quaternary tree in the 
two-dimensional case.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;
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% Decompose x at depth 3 with db1 wavelet packets
% using Shannon entropy. 
wpt = wpdec(x,3,'db1','shannon');

% The result is the wavelet packet tree wpt.

% Plot wavelet packet tree (binary tree, or tree of order 2).
plot(wpt)

Algorithm The algorithm used for the wavelet packets decomposition follows the same 
line as the wavelet decomposition process (see dwt and wavedec for more 
information).

References Coifman, R.R.; M.V. Wickerhauser, (1992), “Entropy-based Algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 
2nd edition. (English translation: Wavelets: Algorithms and Applications, 
SIAM). 

Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet algorithms,” 
Proceedings ondelettes et paquets d’ondes, 17–21 June, Rocquencourt, France, 
pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software 
algorithms, A.K. Peters.

See Also wavedec, waveinfo, wenergy, wpdec, wprec
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8wpdec2Purpose Wavelet packet decomposition 2-D

Syntax T = wpdec2(X,N,'wname',E,P)
T = wpdec2(X,N,'wname')

Description wpdec2 is a two-dimensional wavelet packet analysis function. 

T = wpdec2(X,N,'wname',E,P) returns a wavelet packet tree T corresponding 
to the wavelet packet decomposition of the matrix X, at level N, with a 
particular wavelet ('wname', see wfilters for more information).

T = wpdec2(X,N,'wname') is equivalent to 
T = wpdec2(X,N,'wname','shannon').

E is a string containing the type of entropy and P is an optional parameter 
depending on the value of T (see wentropy for more information).

Entropy Type 
Name (E)

Parameter (P) Comments

'shannon' P is not used.

'log energy' P is not used.

'threshold' 0 ≤ P P is the threshold.

'sure' 0 ≤ P P is the threshold.

'norm' 1 ≤ P P is the power. 

'user' string P is a string containing the M-file 
name of your own entropy 
function, with a single input X.

STR No 
constraints 
on P

STR is any other string except 
those used for the previous 
Entropy Type Names listed above.
STR contains the M-file name of 
your own entropy function, with X 
as input and P as additional 
parameter to your entropy 
function.
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Note  The 'user' option is historical and still kept for compatibility,  but it is 
obsoleted by the last option described in the preceding table. The FunName 
option does the same as the 'user' option and in addition, allows you to pass 
a parameter to your own entropy function.

See wpdec for a more complete description of the wavelet packet decomposition.

Remarks When X represents an indexed image, X is an m-by-n matrix. When X represents 
a truecolor image, it is an m-by-n-by-3 array, where each m-by-n matrix 
represents a red, green, or blue color plane concatenated along the third 
dimension.

For more information on image formats, see the image and imfinfo reference 
pages.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load image. 
load tire 
% X contains the loaded image.

% For an image the decomposition is performed using: 
t = wpdec2(X,2,'db1'); 
% The default entropy is shannon.

% Plot wavelet packet tree 
% (quarternary tree, or tree of order 4). 
plot(t)
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Algorithm The algorithm used for the wavelet packets decomposition follows the same 
line as the wavelet decomposition process (see dwt2 and wavedec2 for more 
information).

References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

Meyer, Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 
2nd edition. (English translation: Wavelets: Algorithms and Applications, 
SIAM). 

Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet algorithms,” 
Proceedings ondelettes et paquets d’ondes, 17–21 June, Rocquencourt, France, 
pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software 
Algorithms, A.K. Peters.

See Also wavedec2, waveinfo, wenergy, wpdec, wprec2
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8wpdencmpPurpose De-noising or compression using wavelet packets

Syntax [XD,TREED,PERF0,PERFL2] = 
wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPAPP)

[XD,TREED,PERF0,PERFL2] =        
wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP)

Description wpdencmp is a one- or two-dimensional de-noising and compression oriented 
function.

wpdencmp performs a de-noising or compression process of a signal or an image, 
using wavelet packet. The ideas and the procedures for de-noising and 
compression using wavelet packet decomposition are the same as those used in 
the wavelets framework (see wden and wdencmp for more information). 

[XD,TREED,PERF0,PERFL2] = 
wpdencmp(X,SORH,N,'wname',CRIT,PAR,KEEPAPP) returns a de-noised or 
compressed version XD of input signal X (one- or two-dimensional) obtained by 
wavelet packets coefficients thresholding. 

The additional output argument TREED is the wavelet packet best tree 
decomposition (see besttree for more information) of XD. PERFL2 and PERF0 are 
L2 energy recovery and compression scores in percentages. 

PERFL2 = 100 * (vector-norm of WP-cfs of XD / vector-norm of WP-cfs of X)2. 

If X is a one-dimensional signal and 'wname' an orthogonal wavelet, PERFL2 is 
reduced to

 

SORH ('s' or 'h') is for soft or hard thresholding (see wthresh for more 
information). 

Wavelet packet decomposition is performed at level N and 'wname' is a string 
containing the wavelet name. Best decomposition is performed using entropy 
criterion defined by string CRIT and parameter PAR (see wentropy for more 
information). Threshold parameter is also PAR. If KEEPAPP = 1, approximation 
coefficients cannot be thresholded; otherwise, they can be. 

100 XD 2

X 2
---------------------------
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[XD,TREED,PERF0,PERFL2] = wpdencmp(TREE,SORH,CRIT,PAR,KEEPAPP) has 
the same output arguments, using the same options as above, but obtained 
directly from the input wavelet packet tree decomposition TREE (see wpdec for 
more information) of the signal to be de-noised or compressed.

In addition if CRIT = 'nobest' no optimization is done and the current 
decomposition is thresholded.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load original signal. 
load sumlichr; x = sumlichr;

% Use wpdencmp for signal compression. 
% Find default values (see ddencmp). 
[thr,sorh,keepapp,crit] = ddencmp('cmp','wp',x)

thr =
0.5193

sorh =
h

keepapp =
1

crit =
threshold

% De-noise signal using global thresholding with 
% threshold best basis. 
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[xc,treed,datad,perf0,perfl2] = ... 
wpdencmp(x,sorh,3,'db2',crit,thr,keepapp);

% Using some plotting commands,
% the following figure is generated.

% Load original image. 
load sinsin

% Generate noisy image. 
init = 2055615866; randn('seed',init); 
x = X/18 + randn(size(X));

% Use wpdencmp for image de-noising. 
% Find default values (see ddencmp).
[thr,sorh,keepapp,crit] = ddencmp('den','wp',x)

thr =
4.9685
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sorh =
h
keepapp =

1

crit =
sure
% De-noise image using global thresholding with 
% SURE best basis. 
xd = wpdencmp(x,sorh,3,'sym4',crit,thr,keepapp);

% Using some plotting commands,
% the following figure is generated.

% Generate heavy sine and a noisy version of it.
[xref,x] = wnoise(5,11,7,init);

% Use wpdencmp for signal de-noising. 
n = length(x); 
thr = sqrt(2*log(n*log(n)/log(2))); 
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xwpd = wpdencmp(x,'s',4,'sym4','sure',thr,1);

% Compare with wavelet-based de-noising result. 
xwd = wden(x,'rigrsure','s','one',4,'sym4');

% Using some plotting commands,
% the following figure is generated.

References Antoniadis, A.; G. Oppenheim, Eds. (1995), Wavelets and statistics, Lecture 
Notes in Statistics, 103, Springer Verlag.

Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

DeVore, R.A.; B. Jawerth, B.J. Lucier (1992), “Image compression through 
wavelet transform coding,” IEEE Trans. on Inf. Theory, vol. 38, No 2, pp. 719–
746.

Donoho, D.L. (1993), “Progress in wavelet analysis and WVD: a ten minute 
tour,” in Progress in wavelet analysis and applications, Y. Meyer, S. Roques, 
pp. 109–128. Frontières Ed. 
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Donoho, D.L.; I.M. Johnstone (1994), “Ideal spatial adaptation by wavelet 
shrinkage,” Biometrika, vol. 81, pp. 425–455. 

Donoho, D.L.; I.M. Johnstone, G. Kerkyacharian, D. Picard (1995), “Wavelet 
shrinkage: asymptopia,” Jour. Roy. Stat. Soc., series B, vol. 57 no. 2, pp. 301–
369.

See Also besttree, ddencmp, wdencmp, wenergy, wpbmpen, wpdec, wpdec2, wthresh
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8wpfunPurpose Wavelet packet functions

Syntax [WPWS,X] = wpfun('wname',NUM,PREC)
[WPWS,X] = wpfun('wname',NUM)

Description wpfun is a wavelet packet analysis function. 

[WPWS,X] = wpfun('wname',NUM,PREC) computes the wavelet packets for a 
wavelet 'wname'  (see wfilters for more information), on dyadic intervals of 
length 2-PREC.

PREC must be a positive integer. Output matrix WPWS contains the W functions 
of index from 0 to NUM, stored row-wise as [W0; W1; ... ; WNUM]. Output vector 
X is the corresponding common X-grid vector. 

[WPWS,X] = wpfun('wname',NUM) is equivalent to 
[WPWS,X] = wpfun('wname',NUM,7). 

The computation scheme for wavelet packets generation is easy when using an 
orthogonal wavelet. We start with the two filters of length 2N, denoted h(n) and 
g(n), corresponding to the wavelet. 

Now by induction let us define the following sequence of functions 
(Wn(x) , n = 0,1,2,...) by

where W0(x) = (x) is the scaling function and W1(x) = (x) is the wavelet 
function.

For example for the Haar wavelet we have

W2n x( ) 2 h k( )
k 0= … 2N 1–, ,

∑ Wn 2x k–( )=

W2n x( ) 2 h k( )
k 0= … 2N 1–, ,

∑ Wn 2x k–( )=

φ ψ

N 1 h 0( ), h 1( ) 1
2

-------= = =
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and

The equations become

W0(x) = (x) is the haar scaling function and W1(x) = (x) is the haar wavelet, 
both supported in [0,1].

Then we can obtain W2n by adding two 1/2-scaled versions of Wn with distinct 
supports [0,1/2] and [1/2,1], and obtain W2n+1 by subtracting the same versions 
of Wn.

Starting from more regular original wavelets, using a similar construction, we 
obtain smoothed versions of this system of W-functions, all with support in the 
interval [0, 2N-1].

Examples % Compute the db2 Wn functions for n = 0 to 7, generating 
% the db2 wavelet packets. 
[wp,x] = wpfun('db2',7);

% Using some plotting commands,
% the following figure is generated.

g 0( ) g 1( )–
1
2

-------= =

W2n x( ) Wn 2x( ) Wn 2x 1–( )  and  W2n 1+ x( ) Wn 2x( ) Wn 2x 1–( )–=( )+=

φ ψ
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References Coifman, R.R.; M.V. Wickerhauser (1992), “Entropy-based Algorithms for best 
basis selection,” IEEE Trans. on Inf. Theory, vol. 38, 2, pp. 713–718.

Meyer,  Y. (1993), Les ondelettes. Algorithmes et applications, Colin Ed., Paris, 
2nd edition. (English translation: Wavelets: Algorithms and applications, 
SIAM). 

Wickerhauser, M.V. (1991), “INRIA lectures on wavelet packet algorithms,” 
Proceedings ondelettes et paquets d’ondes, 17–21 June, Rocquencourt, France, 
pp. 31–99.

Wickerhauser, M.V. (1994), Adapted wavelet analysis from theory to software 
algorithms, A.K. Peters.

See Also wavefun, waveinfo
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8wpjoinPurpose Recompose wavelet packet

Syntax T = wpjoin(T,N)
[T,X] = wpjoin(T,N)
T = wpjoin(T)
[T,X] = wpjoin(T)

Description wpjoin is a one- or two-dimensional wavelet packet analysis function. 

wpjoin updates the wavelet packet tree after the recomposition of a node.

The nodes are numbered from left to right and from top to bottom. The root 
index is 0. 

T = wpjoin(T,N) returns the modified wavelet packet tree T corresponding to 
a recomposition of the node N.

[T,X] = wpjoin(T,N) also returns the coefficients of the node.

T = wpjoin(T) is equivalent to T = wpjoin(T,0).

[T,X] = wpjoin(T) is equivalent to [T,X] = wpjoin(T,0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets. 
wpt = wpdec(x,3,'db1');
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% Plot wavelet packet tree wpt. 
plot(wpt)

% Recompose packet (1,1) or 2 
wpt = wpjoin(wpt,[1 1]);

% Plot wavelet packet tree wpt. 
plot(wpt)

See Also wpdec, wpdec2, wpsplt
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8wprcoefPurpose Reconstruct wavelet packet coefficients

Syntax X = wprcoef(T,N) 

Description wprcoef is a one- or two-dimensional wavelet packet analysis function. 

X = wprcoef(T,N) computes reconstructed coefficients of the node N of the 
wavelet packet tree T.

X = wprcoef(T) is equivalent to X = wprcoef(T,0).

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; x = noisdopp;

figure(1); subplot(211); 
plot(x); title('Original signal');

% Decompose x at depth 3 with db1 wavelet packets 
% using Shannon entropy. 
t = wpdec(x,3,'db1','shannon');

% Plot wavelet packet tree. 
plot(t)
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% Reconstruct packet (2,1). 
rcfs = wprcoef(t,[2 1]);

figure(1); subplot(212); 
plot(rcfs); title('Reconstructed packet (2,1)');

See Also wpdec, wpdec2, wprec, wprec2
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8wprecPurpose Wavelet packet reconstruction 1-D

Syntax X = wprec(T) 

Description wprec is a one-dimensional wavelet packet analysis function.

X = wprec(T) returns the reconstructed vector X corresponding to a wavelet 
packet tree T.

wprec is the inverse function of wpdec in the sense that the abstract statement 
wprec(wpdec(X,'wname')) would give back X. 

See Also wpdec, wpdec2, wpjoin, wprec2, wpsplt
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8wprec2Purpose Wavelet packet reconstruction 2-D

Syntax X = wprec2(T) 

Description wprec2 is a two-dimensional wavelet packet analysis function.

X = wprec2(T) returns the reconstructed matrix X corresponding to a wavelet 
packet tree T.

wprec2 is the inverse function of wpdec2 in the sense that the abstract 
statement wprec2(wpdec2(X,'wname')) would give back X. 

Remarks If T is obtained from an indexed image analysis or a truecolor image analysis,  
X is an m-by-n matrix or an m-by-n-by-3 array, respectively.

For more information on image formats, see the image and imfinfo reference 
pages.

See Also wpdec, wpdec2, wpjoin, wprec, wpsplt
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8wpspltPurpose Split (decompose) wavelet packet

Syntax T = wpsplt(T,N)
[T,cA,cD] = wpsplt(T,N)
[T,cA,cH,cV,cD] = wpsplt(T,N)

Description wpsplt is a one- or two-dimensional wavelet packet analysis function. 

wpsplt updates the wavelet packet tree after the decomposition of a node.

T = wpsplt(T,N) returns the modified wavelet packet tree T corresponding to 
the decomposition of the node N. 

For a one-dimensional decomposition,

[T,cA,cD] = wpsplt(T,N) with cA = approximation and cD = detail of node N. 

For a two-dimensional decomposition,

[T,cA,cH,cV,cD] = wpsplt(T,N) with cA = approximation and 
cH,cV,c = horizontal, vertical, and diagonal details of node N.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load signal. 
load noisdopp; 
x = noisdopp;

% Decompose x at depth 3 with db1 wavelet packets. 
wpt = wpdec(x,3,'db1');
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% Plot wavelet packet tree wpt. 
plot(wpt)

% Decompose packet (3,0).
wpt = wpsplt(wpt,[3 0]); 
% or equivalently wpsplt(wpt,7).

% Plot wavelet packet tree wpt. 
plot(wpt)

See Also wavedec, wavedec2, wpdec, wpdec2, wpjoin
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8wpthcoefPurpose Wavelet packet coefficients thresholding

Syntax T = wpthcoef(T,KEEPAPP,SORH,THR)

Description wpthcoef is a one- or two-dimensional de-noising and compression utility.

NT = wpthcoef(T,KEEPAPP,SORH,THR) returns a new wavelet packet tree NT 
obtained from the wavelet packet tree T by coefficients thresholding.

If KEEPAPP = 1, approximation coefficients are not thresholded; otherwise, they 
can be thresholded.

If SORH = 's', soft thresholding is applied; if SORH = 'h', hard thresholding is 
applied (see wthresh for more information).

THR is the threshold value.

See Also wpdec, wpdec2, wpdencmp, wthresh
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8wptreePurpose WPTREE constructor

Syntax T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR)
T = wptree(ORDER,DEPTH,X,WNAME)
T = wptree( ... ,USERDATA)

Description T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,PARAMETER) returns a complete 
wavelet packet tree T.

ORDER is an integer representing the order of the tree (the number of “children” 
of each non terminal node). ORDER must be equal to 2 or 4.

If ORDER = 2, T is a WPTREE object corresponding to a wavelet packet 
decomposition of the vector (signal) X, at level DEPTH with a particular wavelet 
WNAME.

If ORDER = 4, T is a WPTREE object corresponding to a wavelet packet 
decomposition of the matrix (image) X, at level DEPTH with a particular wavelet 
WNAME.

ENT_TYPE is a string containing the entropy type and ENT_PAR is an optional 
parameter used for entropy computation ( see wentropy, wpdec, or wpdec2 for 
more information).

T = wptree(ORDER,DEPTH,X,WNAME) is equivalent to 
T = wptree(ORDER,DEPTH,X,WNAME,'shannon')

With T = wptree(ORDER,DEPTH,X,WNAME,ENT_TYPE,ENT_PAR,USERDATA) you 
may set a userdata field.

The function wptree returns a WPTREE object.

For more information on object fields, see the get function or type 

help wptree/get

Class WPTREE (Parent class: DTREE)

Fields
'dtree' DTREE parent object

'wavInfo' Structure (wavelet information)

'entInfo' Structure (entropy information)
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The wavelet information structure, 'wavInfo', contains

The entropy information structure, 'entInfo', contains

Fields from the DTREE parent object:

'allNI' is an array of size nbnode by 5, which contains

Each line is built based on the following scheme:

Examples % Create a wavelet packet tree.
x = rand(1,512);
t = wptree(2,3,x,'db3');
t = wpjoin(t,[4;5]);

'wavName' Wavelet name

'Lo_D' Low Decomposition filter

'Hi_D' High Decomposition filter

'Lo_R' Low Reconstruction filter

'Hi_R' High Reconstruction filter

'entName' Entropy name

'entPar' Entropy parameter

'allNI' All nodes information

ind Index

size Size of data

ent Entropy

ento Optimal entropy

ind size ent ento
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% Plot tree t4.
plot(t);

% Click the node (3,0), (see the plot function).

See Also dtree, ntree
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data for node: (7) or (3,0).
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8wpviewcfPurpose Plot wavelet packets colored coefficients

Syntax wpviewcf(T,CMODE)
wpviewcf(T,CMODE,NBCOL)

Description wpviewcf(T,CMODE) plots the colored coefficients for the terminal nodes of the 
tree T.

T is a wavelet packet tree and CMODE is an integer, which represents the color 
mode. The color modes are listed in the table below.

wpviewcf(T,CMODE,NBCOL) uses NBCOL colors.

Color Mode Description

1 Frequency order – Global coloration – Absolute values

2 Frequency order – By level – Absolute values

3 Frequency order – Global coloration – Values

4 Frequency order – By level coloration – Values

5 Natural order – Global coloration – Absolute values

6 Natural order – By level – Absolute values

7 Natural order – Global coloration – Values

8 Natural order – By level coloration – Values
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Examples % Create a wavelet packet tree.
x = sin(8*pi*[0:0.005:1]);
t = wpdec(x,3,'db1');

% Plot tree t.
% Click the node (3,0), (see the plot function)
plot(t);

% Plot the colored wavelet packet coefficients.
wpviewcf(t,1);

See Also wpdec
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8wrcoefPurpose Reconstruct single branch from 1-D wavelet coefficients

Syntax X = wrcoef('type',C,L,'wname',N)
X = wrcoef('type',C,L,Lo_R,Hi_R,N)
X = wrcoef('type',C,L,'wname')
X = wrcoef('type',C,L,Lo_R,Hi_R)

Description wrcoef reconstructs the coefficients of a one-dimensional signal, given a 
wavelet decomposition structure (C and L) and either a specified wavelet 
('wname', see wfilters for more information) or specified reconstruction filters 
(Lo_R and Hi_R).

X = wrcoef('type',C,L,'wname',N) computes the vector of reconstructed 
coefficients, based on the wavelet decomposition structure [C,L] (see wavedec 
for more information), at level N. 'wname' is a string containing the wavelet 
name.

Argument 'type' determines whether approximation ('type' = 'a') or detail 
('type' = 'd') coefficients are reconstructed. When 'type' = 'a', N is allowed 
to be 0; otherwise, a strictly positive number N is required. Level N must be an 
integer such that N ≤ length(L)-2.

X = wrcoef('type',C,L,Lo_R,Hi_R,N) computes coefficients as above, given 
the reconstruction filters you specify. 

X = wrcoef('type',C,L,'wname') and X = wrcoef('type',C,L,Lo_R,Hi_R) 
reconstruct coefficients of maximum level N = length(L)-2.
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Examples % The current extension mode is zero-padding (see dwtmode).

% Load a one-dimensional signal. 
load sumsin; s = sumsin; 

% Perform decomposition at level 5 of s using sym4. 
[c,l] = wavedec(s,5,'sym4');

% Reconstruct approximation at level 5, 
% from the wavelet decomposition structure [c,l].
a5 = wrcoef('a',c,l,'sym4',5);

% Using some plotting commands,
% the following figure is generated.

See Also appcoef, detcoef, wavedec
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8wrcoef2Purpose Reconstruct single branch from 2-D wavelet coefficients

Syntax X = wrcoef2('type',C,S,'wname',N)
X = wrcoef2('type',C,S,Lo_R,Hi_R,N)
X = wrcoef2('type',C,S,'wname')
X = wrcoef2('type',C,S,Lo_R,Hi_R)

Description wrcoef2 is a two-dimensional wavelet analysis function. wrcoef2 reconstructs 
the coefficients of an image. 

X = wrcoef2('type',C,S,'wname',N) computes the matrix of reconstructed 
coefficients of level N, based on the wavelet decomposition structure [C,S] (see 
wavedec2 for more information). 

'wname' is a string containing the name of the wavelet (see wfilters for more 
information). If 'type' = 'a', approximation coefficients are reconstructed; 
otherwise if 'type' = 'h' ('v' or 'd', respectively), horizontal (vertical or 
diagonal, respectively) detail coefficients are reconstructed.

Level N must be an integer such that 0 ≤ N ≤ size(S,1)-2 if 'type' = 'a' 
and such that 1 ≤ N ≤ size(S,1)-2 if 'type' = 'h', 'v', or 'd'. 

Instead of giving the wavelet name, you can give the filters. 

For X = wrcoef2('type',C,S,Lo_R,Hi_R,N), Lo_R is the reconstruction 
low-pass filter and Hi_R is the reconstruction high-pass filter. 

X = wrcoef2('type',C,S,'wname') or X = wrcoef2('type',C,S,Lo_R,Hi_R) 
reconstruct coefficients of maximum level N = size(S,1)-2.

Remarks If C and S are obtained from an indexed image analysis (respectively a truecolor 
image analysis) then X is an m-by-n matrix (respectively  an m-by-n-by-3 array).

For more information on image formats, see the reference pages of image and 
imfinfo functions.

Examples % The current extension mode is zero-padding (see dwtmode).

% Load an image. 
load woman;
% X contains the loaded image.
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% Perform decomposition at level 2 
% of X using sym5. 
[c,s] = wavedec2(X,2,'sym5');
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% Reconstruct approximations at 
% levels 1 and 2, from the wavelet 
% decomposition structure [c,s]. 
a1 = wrcoef2('a',c,s,'sym5',1); 
a2 = wrcoef2('a',c,s,'sym5',2);

% Reconstruct details at level 2, 
% from the wavelet decomposition 
% structure [c,s]. 
% 'h' is for horizontal, 
% 'v' is for vertical, 
% 'd' is for diagonal. 
hd2 = wrcoef2('h',c,s,'sym5',2); 
vd2 = wrcoef2('v',c,s,'sym5',2); 
dd2 = wrcoef2('d',c,s,'sym5',2);

% All these images are of same size sX. 
sX = size(X)

sX =
256 256

sa1 = size(a1)

sa1 =
256 256

shd2 = size(hd2)

shd2 =
256 256

See Also appcoef2, detcoef2, wavedec2
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8wrevPurpose Flip vector

Syntax Y = wrev(X) 

Description wrev is a general utility.

Y = wrev(X) reverses the vector X.

Examples % Set simple vector. 
v = [1 2 3];

% Reverse v.
wrev(v)

ans =
3 2 1

% Reverse v transpose. 
wrev(v')

ans =
3 
2 
1

See Also fliplr, flipud
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8writePurpose Write values in WPTREE fields

Syntax T = write(T,'cfs',NODE,COEFS)
T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...)

Description T = write(T,'cfs',NODE,COEFS) writes coefficients for the terminal node 
NODE.

T = write(T,'cfs',N1,CFS1,'cfs',N2,CFS2, ...) writes coefficients CFS1, 
CFS2, ... for the terminal nodes N1, N2, .... 

Caution The coefficients values must have the suitable size. You can use 
S = read(T,'sizes',NODE) or S = read(T,'sizes',[N1;N2; ...]) in order 
to get those sizes. 

Examples % Create a wavelet packet tree.
load noisdopp; x = noisdopp;
t = wpdec(x,3,'db3');
t = wpjoin(t,[4;5]);

% Plot tree t and click the node (0,0) (see the plot function).
plot(t);
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data for node: (0) or (0,0).
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% Write values.
sNod = read(t,'sizes',[4,5,7]);  
cfs4 = zeros(sNod(1,:));
cfs5 = zeros(sNod(2,:));
cfs7 = zeros(sNod(3,:));
t = write(t,'cfs',4,cfs4,'cfs',5,cfs5,'cfs',7,cfs7);

% Plot tree t and click the node (0,0) (see the plot function).
plot(t)

See Also disp, get, read, set
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8wscalogramPurpose Scalogram for continuous wavelet transform

Syntax SC = wscalogram(TYPEPLOT,COEFS)
SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...)

Description SC = wscalogram(TYPEPLOT,COEFS) computes the scalogram SC which 
represents the percentage of energy for each coefficient. COEFS is the matrix of 
the continuous wavelet coefficients (see cwt).

The scalogram is obtained by computing:

S = abs(coefs.*coefs); SC = 100*S./sum(S(:))

When TYPEPLOT is equal to 'image', a scaled image of scalogram is displayed. 
When TYPEPLOT is equal to 'contour', a contour representation of scalogram 
is displayed. Otherwise, the scalogram is returned without plot representation. 

SC = wscalogram(TYPEPLOT,COEFS,'PropName1',PropVal1,...) allows you 
to modify some properties. The valid choices for PropName are:

If  power > 0, coefficients are first normalized

coefs(k,:) = coefs(k,:)/(scales(k)^power)

and then the scalogram is computed as explained above.

Examples % Compute signal s
t = linspace(-1,1,512);
s = 1-abs(t);

% Plot signal s
figure;
plot(s), axis tight

'scales' Scales used for the CWT.

'ydata' Signal used for the CWT.

'xdata' x values corresponding to the signal values.

'power' Positive real value. Default value is zero.
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% Compute coefficients COEFS using cwt
COEFS = cwt(s,1:32,'cgau4');

% Compute and plot the scalogram (image option)
figure;
SC = wscalogram('image',COEFS);

% Compute and plot the scalogram (contour option)
figure;
SC = wscalogram('contour',COEFS);
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See Also cwt
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8wtboPurpose WTBO constructor

Syntax OBJ = wtbo
OBJ = wtbo(USERDATA)

Description OBJ = wtbo returns a WTBO object. Any object in the Wavelet Toolbox™ 
software is parented by a WTBO object.

With OBJ = wtbo(USERDATA) you can set a userdata field.

Class WTBO (Parent class: none)

Fields
wtboInfo Object information (not used in the current version of the 

toolbox)

ud Userdata field
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8wtbxmngrPurpose Wavelet Toolbox™ manager

Syntax wtbxmngr
wtbxmngr(OPTION)
V = wtbxmngr('version')

Description wtbxmngr or wtbxmngr('version')  displays the current version of Wavelet 
Toolbox software.

wtbxmngr(OPTION)  sets a toolbox option. Available options are

V = wtbxmngr('version')  saves the current version of the toolbox to variable 
V.

Examples wtbxmngr('version')

*************************************
**  Wavelet Toolbox Version: V3.1  **
*************************************

wtbxmngr('FigRatio')      % Display the current figure ratio
wtbxmngr('FigRatio',1.25) % Set the figure ratio to 1.25
wtbxmngr('FigRatio')      % Display the current figure ratio
wtbxmngr('DefaultSize')   % Return to the default figure ratio

Option Description

'LargeFonts' Sets the size of future-created figures to 
use large fonts.

'DefaultSize' Restores the default figure size for future- 
created figures.

'FigRatio' Returns the current figure ratio value.

'FigRatio',ratio Changes the size of future-created figures 
by multiplying the default size by the 
specified ratio, where ratio must be 
between 0.75 and 1.25.
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8wthcoefPurpose Wavelet coefficient thresholding 1-D

Syntax NC = wthcoef('d',C,L,N,P) 
NC = wthcoef('d',C,L,N)
NC = wthcoef('a',C,L) 
NC = wthcoef('t',C,L,N,T,SORH)

Description wthcoef is a one-dimensional de-noising and compression oriented function.

NC = wthcoef('d',C,L,N,P) returns coefficients obtained from the wavelet 
decomposition structure [C,L] (see wavedec for more information), by rate 
compression defined in vectors N and P. N contains the detail levels to be 
compressed and P the corresponding percentages of lower coefficients to be set 
to zero. N and P must be of same length. Vector N must be such that  
1 ≤ N(i) ≤ length(L)-2.

NC = wthcoef('d',C,L,N) returns coefficients obtained from [C,L] by setting 
all the coefficients of detail levels defined in N to zero.

NC = wthcoef('a',C,L) returns coefficients obtained by setting approximation 
coefficients to zero.

NC = wthcoef('t',C,L,N,T,SORH) returns coefficients obtained from the 
wavelet decomposition structure [C,L] by soft (if SORH ='s') or hard (if 
SORH ='h') thresholding (see wthresh for more information) defined in vectors 
N and T. N contains the detail levels to be thresholded and T the corresponding 
thresholds. N and T must be of the same length.

[NC,L] is the modified wavelet decomposition structure.

See Also wavedec, wthresh
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8wthcoef2Purpose Wavelet coefficient thresholding 2-D

Syntax NC = wthcoef2('type',C,S,N,T,SORH) 
NC = wthcoef2('type',C,S,N)
NC = wthcoef2('a',C,S) 
NC = wthcoef2('t',C,S,N,T,SORH)

Description wthcoef2 is a two-dimensional de-noising and compression oriented function.

For 'type' = 'h' ( 'v' or 'd'), NC = wthcoef2('type',C,S,N,T,SORH) 
returns the horizontal (vertical or diagonal, respectively) coefficients obtained 
from the wavelet decomposition structure [C,S] (see wavedec2 for more 
information), by soft (if SORH ='s') or hard (if SORH ='h') thresholding defined 
in vectors N and T. N contains the detail levels to be thresholded and T the 
corresponding thresholds. N and T must be of the same length. The vector N 
must be such that 1 ≤ N(i) ≤ size(S,1)-2.

For 'type' = 'h' ('v' or 'd'), NC = wthcoef2('type',C,S,N) returns the 
horizontal (vertical or diagonal, respectively) coefficients obtained from [C,S] 
by setting all the coefficients of detail levels defined in N to zero.

NC = wthcoef2('a',C,S) returns the coefficients obtained by setting 
approximation coefficients to zero.

NC = wthcoef2('t',C,S,N,T,SORH) returns the detail coefficients obtained 
from the wavelet decomposition structure [C,S] by soft (if SORH ='s') or hard 
(if SORH ='h') thresholding (see wthresh for more information) defined in 
vectors N and T. N contains the detail levels to be thresholded and T the 
corresponding thresholds which are applied in the three detail orientations. N 
and T must be of the same length.

[NC,S] is the modified wavelet decomposition structure.

See Also wavedec2, wthresh
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8wthreshPurpose Soft or hard thresholding

Syntax Y = wthresh(X,SORH,T)

Description Y = wthresh(X,SORH,T) returns the soft (if SORH = 's') or hard (if SORH = 'h') 
thresholding of the input vector or matrix X. T is the threshold value. 

Y = wthresh(X,'s',T) returns , soft thresholding is 
wavelet shrinkage ( (x)+ = 0 if x < 0; (x)+ = x, if x ≥ 0 ). 

Y = wthresh(X,'h',T) returns , hard thresholding is cruder.

Examples % Generate signal and set threshold. 
y = linspace(-1,1,100); 
thr = 0.4;

% Perform hard thresholding. 
ythard = wthresh(y,'h',thr);

% Perform soft thresholding. 
ytsoft = wthresh(y,'s',thr);

% Using some plotting commands,
% the following figure is generated.

See Also wden, wdencmp, wpdencmp

Y sign X( ) X T–( )+⋅=

Y X.1 X T>( )=

−1 0 1
−1

−0.5

0

0.5

1
Original signal

−1 0 1
−1

−0.5

0

0.5

1
Hard thresholded signal

−1 0 1
−1

−0.5

0

0.5

1
Soft thresholded signal
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8wthrmngrPurpose Threshold settings manager

Syntax THR = wthrmngr(OPTION,METHOD,VARARGIN)

Description THR = wthrmngr(OPTION,METHOD,VARARGIN) returns a  global threshold or 
level dependent thresholds depending on OPTION. The inputs, VARARGIN, 
depend on the OPTION and METHOD values.

This M-file returns the thresholds used throughout the Wavelet Toolbox™ 
software for de-noising and compression tools (command line M-files or GUI 
tools).

Valid options for the METHOD parameter are listed in the table below.

METHOD Description

'scarcehi' See wdcbm or wdcbm2 when used with 'high' predefined 
value of parameter M.

'scarceme' See wdcbm or wdcbm2 when used with 'medium' 
predefined value of parameter M.

'scarcelo' See wdcbm or wdcbm2 when used with 'low' predefined 
value of parameter M.

'sqtwolog' See 'sqtwolog' option in thselect, and see also wden.

'sqtwologuwn' See 'sqtwolog' option in thselect, and see also wden 
when used with 'sln' option.

'sqtwologswn' See 'sqtwolog' option in thselect, and see also wden 
when used with 'mln' option.

'rigsure' See 'rigsure' option in thselect, and see also wden.

'heursure' See 'heursure' option in thselect, and see also wden.

'minimaxi' See 'minimaxi' option in thselect, and see also wden.

'penalhi' See wbmpen or wpbmpen when used with 'high' value of 
parameter ALPHA.



wthrmngr

8-446

Discrete Wavelet 1-D Options

Compression using a global threshold. X is the signal to be compressed and 
[C,L] is the wavelet decomposition structure of the signal to be compressed. 

THR = wthrmngr('dw1dcompGBL','rem_n0',X)

THR = wthrmngr('dw1dcompGBL','bal_sn',X)

Compression using level dependent thresholds. X is the signal to be 
compressed and [C,L] is the wavelet decomposition structure of the signal to 
be compressed.

ALFA is a sparsity parameter (see wdcbm for more information).

THR = wthrmngr('dw1dcompLVL','scarcehi',C,L,ALFA)
      ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw1dcompLVL','scarceme',C,L,ALFA)
      ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw1dcompLVL','scarcelo',C,L,ALFA)
      ALFA must be such that 1 < ALFA < 2

'penalme' See wbmpen or wpbmpen when used with 'medium' value 
of parameter ALPHA.

'penallo' See wbmpen or wpbmpen when used with 'low' value of 
parameter ALPHA.

'rem_n0' This option returns a threshold close to 0. A typical THR 
value is median(abs(coefficients)).

'bal_sn' This option returns a threshold such that the 
percentages of retained energy and number of zeros are 
the same.

'sqrtbal_sn' This option returns a threshold equal to the square root 
of the value such that the percentages of retained 
energy and number of zeros are the same.

METHOD Description (Continued)
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De-noising using level dependent thresholds. [C,L] is the wavelet 
decomposition structure of the signal to be de-noised, SCAL defines the 
multiplicative threshold rescaling (see wden for more information) and ALFA is 
a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('dw1ddenoLVL','sqtwolog',C,L,SCAL)

THR = wthrmngr('dw1ddenoLVL','rigrsure',C,L,SCAL)

THR = wthrmngr('dw1ddenoLVL','heursure',C,L,SCAL)

THR = wthrmngr('dw1ddenoLVL','minimaxi',C,L,SCAL)

THR = wthrmngr('dw1ddenoLVL','penalhi',C,L,ALFA)
      ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw1ddenoLVL','penalme',C,L,ALFA)
      ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw1ddenoLVL','penallo',C,L,ALFA)
      ALFA must be such that 1 < ALFA < 2

Discrete Stationary Wavelet 1-D Options

De-noising using level dependent thresholds. SWTDEC is the stationary 
wavelet decomposition structure of the signal to be de-noised, SCAL defines the 
multiplicative threshold rescaling (see wden for more information) and ALFA is 
a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,SCAL)

THR = wthrmngr('sw1ddenoLVL',METHOD,SWTDEC,ALFA)

The options for METHOD are the same as in the 'dw1ddenoLVL'case.

Discrete Wavelet 2-D Options

Compression using a global threshold. X is the image to be compressed and 
[C,S] is the wavelet decomposition structure of the image to be compressed.

THR = wthrmngr('dw2dcompGBL','rem_n0',X)

THR = wthrmngr('dw2dcompGBL','bal_sn',C,S)
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THR = wthrmngr('dw2dcompGBL','sqrtbal_sn',C,S)

Compression using level dependent thresholds.  X is the image to be 
compressed and [C,S] is the wavelet decomposition structure of the image to 
be compressed. ALFA is a sparsity parameter (see wdcbm2 for more information).

THR = wthrmngr('dw2dcompLVL','scarcehi',C,L,ALFA)
      ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw2dcompLVL','scarceme',C,L,ALFA)
      ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw2dcompLVL','scarcelo',C,L,ALFA)
      ALFA must be such that 1 < ALFA < 2

De-noising using level dependent thresholds. [C,S] is the wavelet 
decomposition structure of the image to be de-noised, SCAL defines the 
multiplicative threshold rescaling (see wden for more information) and ALFA is 
a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA)
      ALFA must be such that 2.5 < ALFA < 10

THR = wthrmngr('dw2ddenoLVL','penalme',C,L,ALFA)
      ALFA must be such that 1.5 < ALFA < 2.5

THR = wthrmngr('dw2ddenoLVL','penallo',C,L,ALFA)
      ALFA must be such that 1 < ALFA < 2

THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL)

THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S)

Discrete Stationary Wavelet 2-D Options

De-noising using level dependent thresholds. SWTDEC is the stationary 
wavelet decomposition structure of the image to be de-noised, SCAL defines the 
multiplicative threshold rescaling (see wden for more information) and ALFA is 
a sparsity parameter (see wbmpen for more information).

THR = wthrmngr('sw2ddenoLVL',METHOD,SWTDEC,SCAL)

THR = wthrmngr('sw2ddenoLVL',METHOD,SWTDEC,ALFA)



wthrmngr

8-449

The options for METHOD are the same as in the 'dw2ddenoLVL' case.

Discrete Wavelet Packet 1-D Options

Compression using a global threshold. X is the signal to be compressed and 
WPT is the wavelet packet decomposition structure of the signal to be 
compressed.

THR = wthrmngr('wp1dcompGBL','bal_sn',WPT)

THR = wthrmngr('wp1dcompGBL','rem_n0',X)

De-noising using a global threshold. WPT is the wavelet packet decomposition 
structure of the signal to be de-noised.

THR = wthrmngr('wp1ddenoGBL','sqtwologuwn',WPT)

THR = wthrmngr('wp1ddenoGBL','sqtwologswn',WPT)

THR = wthrmngr('wp1ddenoGBL','bal_sn',WPT)

THR = wthrmngr('wp1ddenoGBL','penalhi',WPT)
      see wbmpen with ALFA = 6.25

THR = wthrmngr('wp1ddenoGBL','penalme',WPT)
      see wbmpen with ALFA = 2

THR = wthrmngr('wp1ddenoGBL','penallo',WPT)
      see wbmpen with ALFA = 1.5

Discrete Wavelet Packet 2-D Options

Compression using a global threshold. X is the image to be compressed and 
WPT is the wavelet packet decomposition structure of the image to be 
compressed.

THR = wthrmngr('wp2dcompGBL','bal_sn',WPT)

THR = wthrmngr('wp2dcompGBL','rem_n0',X)

THR = wthrmngr('wp2dcompGBL','sqrtbal_sn',WPT)

De-noising using a global threshold. WPT is the wavelet packet decomposition 
structure of the image to be de-noised.
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THR = wthrmngr('wp2ddenoGBL','sqtwologuwn',WPT)

THR = wthrmngr('wp2ddenoGBL','sqtwologswn',WPT)

THR = wthrmngr('wp2ddenoGBL','sqrtbal_sn',WPT)

THR = wthrmngr('wp2ddenoGBL','penalhi',WPT)
      see wbmpen with ALFA = 6.25

THR = wthrmngr('wp2ddenoGBL','penalme',WPT)
      see wbmpen with ALFA = 2

THR = wthrmngr('wp2ddenoGBL','penallo',WPT)
      see wbmpen with ALFA = 1.5
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8wtreemgrPurpose NTREE manager

Syntax VARARGOUT = wtreemgr(OPT,T,VARARGIN)

Description  wtreemgr is a tree management utility.

This function returns information on the tree T depending on the value of the 
OPT parameter. 

Allowed values for OPT are listed in the table below.

The functionality associated with the OPT value you specify is described in the 
functions listed in the “See Also” section.

See Also allnodes, isnode, istnode, leaves, nodeasc, nodedesc, nodepar, noleaves, 
ntnode, tnodes, treedpth, treeord

'allnodes' Tree nodes

'isnode' True for existing node

'istnode' True for terminal nodes

'nodeasc' Node ascendants

'nodedesc' Node descendants

'nodepar' Node parent

'ntnode' Number of terminal nodes

'tnodes' Terminal nodes

'leaves' Terminal nodes

'noleaves' Not terminal nodes

'order' Tree order

'depth' Tree depth
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8wvarchgPurpose Find variance change points

Syntax [PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D)
[PTS_OPT,KOPT,T_EST] = wvarchg(Y,K)
[PTS_OPT,KOPT,T_EST] = wvarchg(Y)

Description [PTS_OPT,KOPT,T_EST] = wvarchg(Y,K,D) computes the estimated change 
points of the variance of signal Y for j change points, with j = 0, 1, 2, … , K.

Integer D is the minimum delay between two change points.

 Integer KOPT is the proposed number of change points (0 ≤ KOPT ≤ K). The vector 
PTS_OPT contains the corresponding change points. 

For 1 ≤  k ≤  K, T_EST(k+1,1:k) contains the k instants of the variance change 
points and then, if KOPT > 0,  PTS_OPT = T_EST(KOPT+1,1:KOPT) else PTS_OPT 
= [].

K and D must be integers such that 1 < K << length(Y) and 1 ≤ D << length(Y).

The signal Y should be zero mean.

wvarchg(Y,K) is equivalent to wvarchg(Y,K,10).

wvarchg(Y) is equivalent to wvarchg(Y,6,10).

Examples % Generate signal from a fixed design regression model
% with two change points in the noise variance located
% at positions 200 and 600. 
% Generate block test function.
x = wnoise(1,10);
       
% Generate noisy blocks with change points.
init = 2055615866; randn('seed',init);
bb = randn(1,length(x));
cp1 = 200; cp2 = 600;
x = x + [bb(1:cp1),bb(cp1+1:cp2)/3,bb(cp2+1:end)];
        
% The aim of this example is to recover the two 
% change points in signal x.
% In addition, this example illustrates how the GUI
% tools propose change point locations for interval
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% dependent de-noising thresholds.
% 1. Recover a noisy signal by suppressing an
% approximation.
% Perform a single-level wavelet decomposition 
% of the signal using db3.
wname = 'db3'; lev = 1;
[c,l] = wavedec(x,lev,wname);

% Reconstruct detail at level 1.
det = wrcoef('d',c,l,wname,1);

% 2. Replace 2% of the biggest values by the mean
% in order to remove almost all the signal.
x = sort(abs(det));
v2p100 = x(fix(length(x)*0.98));
ind = find(abs(det)>v2p100);
det(ind) = mean(det);

% 3. Use wvarchg for estimating the change points with
% the following parameters.
%   - the minimum delay between two change points d = 10.
%   - the maximum number of change points is 5. 
[pts_Opt,kopt,t_est] = wvarchg(det,5)

pts_Opt =
   199   601

kopt =
     2

t_est =
        1024           0           0           0           0           0
         601        1024           0           0           0           0
         199         601        1024           0           0           0
         199         261         601        1024           0           0
         207         235         261         601        1024           0
         207         235         261         393         601        1024

% Estimated change points are close to the true change 
% points [200,600].
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References Lavielle, M. (1999), “Detection of multiple changes in a sequence of dependent 
variables,” Stoch. Proc. and their Applications, 83, 2, pp. 79–102.



 

A

GUI Reference

This chapter explains some of the features of the Wavelet Toolbox™ graphical user interface (GUI).

General Features (p. A-2) Features common to all Wavelet Toolbox graphical 
user interfaces

Continuous Wavelet Tool Features (p. A-18) Description of the Continuous Wavelet Tool GUI

Wavelet 1-D Tool Features (p. A-19) Description of the Wavelet 1-D Tool GUI

Wavelet 2-D Tool Features (p. A-21) Description of the Wavelet 2-D Tool GUI

Wavelet Packet Tool Features (1-D and 2-D) 
(p. A-22)

Description of the Packet Tool GUI

Wavelet Display Tool (p. A-27) Description of the Wavelet Display Tool GUI

Wavelet Packet Display Tool (p. A-28) Description of the Packet DisplayTool GUI
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General Features
Some features of the Wavelet Toolbox™ graphical user interface are

• Color coding

• Connectedness of plots

• Using the mouse

• Controlling the colormap

• Controlling the number of colors

• Controlling the coloration mode

• Customizing graphical objects

• Using menus

• Using View Axes button

• Using Interval Dependent Threshold Settings tool

Note  In this appendix, axis (or axes) refers to the MATLAB® graphic object.

Color Coding
In all the graphical tools, signals and analysis components are color coded as 
follows.

Signal Shown In

Original Red

Reconstructed or synthesized Yellow

Approximations Variegated shades of blue

(high level = darker)

Details Variegated shades of green

(high level = darker)
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Connection of Plots
Plots containing related information and graphed on the same abscissa are 
connected in the sense that manipulations performed on one plot affect all 
others in the same way. For images, the connection holds in both abscissa and 
ordinate. You can manipulate all plots along an individual axis (X or Y) or you 
can manipulate all plots along both axes at the same time (XY). 

For example, the approximations and details shown in the separate mode view 
of a decomposition all respond together when any of the plots is magnified or 
zoomed.

Zooming here

Magnifies all 
the plots in 
unison
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Using the Mouse
Wavelet Toolbox software uses three types of mouse control.

Note  The functionality of the Middle Mouse Button and the Right Mouse 
Button can be inverted depending on the platform.

Making Selections and Activating Controls
Most of your work with Wavelet Toolbox graphical tools involves making 
selections and activating controls. You do this using the left (or only) mouse 
button.

Left Mouse Button Middle Mouse Button Right Mouse Button

Make selections 
Activate controls

Display cross-hairs to 
show position-dependent 
information

Translate plots up and 
down, and left and right

Shift + Option +
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Translating Plots
By holding down the right mouse button (or its equivalent on a one- or 
two-button mouse), you can move the mouse to draw a rectangle in either a 
horizontal or vertical orientation. Releasing the middle mouse button then 
causes the plot to shift horizontally (or vertically) by an amount proportional 
to the width (or height) of the rectangle.

Displaying Position-Dependent Information
When you hold down the middle mouse button (or its equivalent on a one- or 
two-button mouse), a cross-hair cursor appears over the graph or plot. 
Position-dependent information also appears in the Info box located at the 
bottom center of the tool. The type of information that appears depends on 
what tool you are using and the plot in which your cursor is located. For 
example, the figure on the left shows the position in X and Y for a signal, the 
figure on the center shows the X position and the packet number for a discrete 
wavelet packet analysis, and the figure on the right shows the X position and 
the percentage of energy present in the detail level for a one-dimensional 
discrete wavelet analysis.
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Controlling the Colormap
The Colormap selection box, located at the lower right of the window, allows 
you to adjust the colormap that is used to plot images or coefficients (wavelet 
or wavelet packet). 

This is more than an aesthetic adjustment because you are likely to see 
different features depending on your colormap selection. 

Consider these images of the Mandelbrot set generated in the Wavelet Packet 
2-D tool, shown here using the bone and 1 bone colormaps.

Controlling the Number of Colors
The Nb. Colors slider, located at the bottom right of the window, allows you to 
adjust how many colors the tool uses to plot images or coefficients (wavelet or 
wavelet packet). You can also use the edit control to adjust the number of 
colors. Adjusting the number of colors can highlight different features of the 
plot. 

Consider the coefficients plot of the Koch curve generated in the Continuous 
Wavelet tool, shown here using 129 colors.

bone 1–bone
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and here using 68 colors.

Controlling the Coloration Mode
In the Continuous Wavelet tools, the coloration of coefficients can be done in 
several different ways.
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In the Wavelet 1-D tool, you access coefficients coloration with the More 
Display Options button, and then select the desired Coloration Mode option.

The More Display Options button appears only when the Display mode is one 
of the following — Show and Scroll, Show and Scroll (Stem Cfs), Superimposed, 
and Separate). In this case, scales are replaced by levels in all options of the 
Coloration Mode menu.

Three parameters are used to do 
coefficients coloration:

init or current:

by scale or all scales:

abs (or not):

When init is selected, coloration 
is performed with all the 
coefficient values.

When current is selected, only a 
portion of the coefficients is used 
to make the coloration. This 
portion is taken from the current 
axis limits of the displayed 
coefficients.

When by scale is selected, the 
coloration is done separately for 
each scale. Otherwise the wavelet 
coefficients at all scales are used 
to scale the coloration.

When abs is not selected, the 
values of the coefficients are used 
(this is called a Normal Mode). 
Otherwise, the absolute values 
are used (this is called an Absolute 
Mode).
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Using Menus

General Menu Bar
At the top of most windows you find the same kind of structure. The menu bar 
of each figure in Wavelet Toolbox software is very similar to the menu bar of 
the default MATLAB figures. You can use many of the tools that are offered in 
the menus and associated toolbar of the standard MATLAB figures.

One of the main differences is the View menu, which depends on the current 
tool used.

View Dynamical Visualization Tool Option.

The View⇒Dynamical Visualization Tool option lets you enable or disable 
the Dynamical Visualization Tool located at the bottom of each window.
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Before using Zoom In, Zoom Out, or Rotate 3D options (or the equivalent 
icons from the toolbar), you must disable the Dynamical Visualization Tool 
to avoid possible conflicts.

Default Display Mode Option.

The Default Display Mode option is specific to the Wavelet 1-D tool and lets 
you set a default Display Mode for all the different analyses you perform 
inside the same tool.

File Menu Options
Depending on the tool you are using, the File menu contains customized 
options. For example, for the Wavelet 1-D tool, the following options are added:
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Export the current figure

Close the current figure
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Many windows have a File⇒Example Analysis menu option, which allows you 
to select an analysis example using predefined parameters. 

Here is an example of the Wavelet 1-D tool.

Help Menu Options
The help menu structure is very similar in all the figures, but many options are 
specific to the current tool in use.
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Using the View Axes Button 
The Dynamical Visualization Tool is located at the bottom of most of the 
windows in the Wavelet Toolbox software. In this tool, the View Axes toggle 
button lets you magnify the axis that you choose.

Help on the current tool

General help on Wavelet 
Toolbox

Contextual help 

Help on related items

Access to the demos
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The toggle buttons in the View Axes figure are positioned so that you can 
understand which axis is correlated with a button.
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When you click the same toggle button again, you restore the original view.

Clicking the View Axes toggle button again closes the View Axes figure.
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Using the Interval-Dependent Threshold Settings 
Tool 
The following tools in the Wavelet Toolbox software let you define 
interval-dependent thresholds:

• Wavelet De-noising 1-D

• Wavelet Compression 1-D

• SWT De-noising 1-D

• Regression Estimation 1-D

• Density Estimation 1-D

To the right of the main window for these tools, you see a command frame 
similar to the following

Clicking the Int. dependent threshold settings toggle button displays the Int. 
dependent Threshold Settings for ... window. After some computation is 
performed, the following figure appears.
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For more information on how to change interval limits and threshold values, 
see the section “One-Dimensional Variance Adaptive Thresholding of Wavelet 
Coefficients” on page 2-158.
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Continuous Wavelet Tool Features
Here is an example of an option that allows you to perform analysis using 
different scale modes.

The three edit boxes allow you to 
specify the first scale value, the 
maximum scale value and the step 
size.

In power 2 mode, the scale values used 

are 20, ..., 21, 2k where k is the pop-up 
menu value.

The scale values are the same as those 
used for the discrete analysis.

This edit box allows you to specify the 
scales used for the continuous analysis, 
using MATLAB syntax for the input.
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Wavelet 1-D Tool Features
The Wavelet 1-D tool is described in the section “One-Dimensional Analysis 
Using the Graphical Interface” on page 2-40. Here are two examples of options 
not covered there.

Tree Mode
This is one of the display options in which you can view the corresponding 
signal by selecting a node in the tree.

Here, on the left, the node d3 is selected and the corresponding detail is 
displayed under the original signal.

More Display Options
This option allows you to customize what is displayed and is dependent on the 
current visualization mode.
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In this example for the Separate Mode, we have chosen not to display the 
coefficients of approximation for levels 2 and 3, nor the coefficients of detail for 
levels 4 and 5. The coefficients’ coloration mode has been changed, and the 
synthesized signal is displayed in the right-hand column, rather than the 
original signal.
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Wavelet 2-D Tool Features
The Wavelet 2-D tool is described in the section “Two-Dimensional Analysis 
Using the Graphical Interface” on page 2-76. Here is an example of an option 
that allows you to view a selected part of the window at a full window 
resolution.



A GUI Reference

A-22

Wavelet Packet Tool Features (1-D and 2-D)
For descriptions of the Wavelet Packet 1-D and Wavelet Packet 2-D tools, 
refer to “Using Wavelet Packets” on page 5-1. These tools are almost identical 
in their layout and function. The only difference involves the extra coloration 
modes available in the Wavelet Packet 1-D tool, as well as the ability of the 
tools to work with signals or images, as appropriate. Let us focus on the 1-D 
capabilities.

Coefficients Coloration
NAT or FRQ is for Natural or Frequency order (see “Wavelet Packet Atoms” on 
page 6-140).

By level or Global is for a coloration made level by level or taking all detail 
levels.

abs is used to take the absolute values of coefficients.
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Node Action
When you select a node in the tree, the selected option is performed. A complete 
description of options is provided in the following sections.

Node Label
The node labels can be changed using the pop-up menu. For example, the Type 
option labels the nodes with (a) for approximation and (d) for detail.

Node Action Functionality
The available options in the Node Action menu are

• Visualize: When you select a node in the wavelet packet tree the 
corresponding signal appears.

• Split/Merge: If a terminal node is selected, it is split, growing the wavelet 
packet tree. Selecting other nodes has the behavior of merging all the nodes 
below it in the wavelet packet tree.
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• Recons.: When you select a node in the wavelet packet tree, the 
corresponding reconstructed signal appears.

• Select On/Off: When On, you can select many nodes in the wavelet packet 
tree. Then you can reconstruct a synthesized signal from the selected nodes 
using the Reconstruct button on the main window. Use the Off selection to 
deselect all the previous selected nodes.

SPLIT

MERGE
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• Statistics: When you select a node in the wavelet packet tree, the Statistics 
tool appears using the signal corresponding to the selected node.
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• View Col. Cfs.: When active, this option removes all the colored coefficients 
displayed, and lets you redraw only the corresponding coefficients by 
selecting a node in the wavelet packet tree.
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Wavelet Display Tool
The Wavelet Display tool is mentioned in the section “An Introduction to the 
Wavelet Families” on page 1-39. 

Here, we show the main window and the associated information windows with 
some additional comments.

Information on the selected waveletInformation on all the wavelets

This parameter decides the 
precision used for the wavelet 
computation. Here, functions are 

computed over 28 points.
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Wavelet Packet Display Tool
The Wavelet Packet Display tool is very similar to the Wavelet Display tool. 

Here, the main window and the associated information windows are displayed 
with some additional comments.

This parameter decides the precision 
used for the wavelet packet 
computation. Here, functions are 

computed over 28 points.

Information on the selected waveletInformation on wavelet packets

Number (-1) of wavelet packet 
functions to compute and display.
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Introduction to Object-Oriented Features
In the Wavelet Toolbox™ software, some object-oriented programming 
features are used for wavelet packet tree structures. 

You may want to skip this appendix, if you prefer to use the command line 
functions and graphical user interface (GUI) without knowing about the 
underlying objects and classes. But, it is useful for Save and Load actions 
where objects are involved.

These aspects, related to a minimal use, are described in “Using Wavelet 
Packets” on page 5-1, and in the reference pages for the corresponding 
functions.

This appendix lets you understand the objects used in the toolbox, use some 
functions that are not fully documented in the reference pages, and extend the 
toolbox functionality using the predefined tree structures and some object 
programming features.

It is helpful to be familiar with the basic MATLAB® object-oriented language 
and terminology.
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Short Description of Objects in the Wavelet Toolbox™ 
Software

Four classes of objects are defined in the Wavelet Toolbox™ software.

The hierarchical organization of these objects is described in the following 
scheme:

Only the Wavelet Packet tools (1-D and 2-D) use the previous objects. More 
precisely, WPTREE objects are used to build wavelet packets.

A short description of this hierarchy of objects follows. For a more detailed 
description see “Detailed Description of Objects in the Wavelet Toolbox™ 
Software” on page B-16.

The WTBO class is an abstract class. Any object in the toolbox is parented by 
a WTBO object and would inherit the methods and fields of the WTBO class.

The NTREE class is dedicated to tree manipulation (node labels, node 
splitting, node merging, …), and it is also an abstract class. The main methods 
are

• nodejoin, which recomposes nodes

• nodesplt, which decomposes nodes

• wtreemgr, which lets you access most of tree and node information (order, 
depth, terminal nodes, ascendants of a node, …)

In fact, the wtreemgr method is not used directly, but you can use the functions 
treeord, treedpth, leaves, nodeasc, …, and the method get.

The DTREE class is dedicated to trees with associated data: vectors or 
matrices.

This class is also an abstract class and some methods have to be overloaded.

The aim of the WPTREE class is to manage wavelet packets 1-D and 2-D. 

Some methods of the DTREE class have been overloaded, for example: split, 
merge, and recons.

DTREE WPTREEWTBO NTREE



B Object-Oriented Programming

B-4

Most of the methods are specific to the class WPTREE; for example: bestlevt, 
besttree, and wp2wtree. 

By typing help wavelet you can see the available methods in the Tree 
Management Utilities and Wavelets Packets Algorithms sections.
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Simple Use of Objects Through Four Examples
You can use command line functions, GUI functions, or you can mix both of 
them to work with wavelet packet trees (WPTREE objects). The most useful 
commands are

• plot, drawtree, and readtree, which let you plot and get a wavelet packet 
tree

• wpjoin and wpsplt, which let you change a wavelet packet tree structure

• get, read, and write, which let you read and write coefficients or information 
in a wavelet packet tree

We can see some of these features in the following examples.

• “Example 1: plot and wpviewcf”

• “Example 2: drawtree and readtree” on page B-8

• “Example 3: A Funny One” on page B-11

• “Example 4: Thresholding Wavelet Packets” on page B-12

Example 1: plot and wpviewcf
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = plot(t);

% Change Node Label from Depth_position to Index and
% click the node (7). You get the following figure.
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% Change Node Action from Visualize to Split-Merge and
% merge the node 2. You get the following figure.

% From the command line, you can get the new tree.
newt = plot(t,'read',fig);

% The first argument of the plot function in the last command
% is dummy. Then the general syntax is:
%    newt = plot(DUMMY,'read',fig);
% where DUMMY is any object parented by an NTREE object.
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% DUMMY can be any object constructor name, which returns
% an object parented by an NTREE object. For example:
%    newt = plot(ntree,'read',fig);
%    newt = plot(dtree,'read',fig);
%    newt = plot(wptree,'read',fig);

% From the command line you can modify the new tree,
% then plot it.
newt = wpjoin(newt,3);
fig2 = plot(newt);

% Change Node Label from Depth_position to Index and
% click the node (3). You get the following figure.

% Using plot(newt,fig), the plot is done in the figure fig,
% which already contains a tree object.

% You can see the colored wavelet packets coefficients using
% from the command line, the wpviewcf function (type help
% wpviewcf for more information).
wpviewcf(newt,1)

% You get the following plot, which contains the terminal nodes
% colored coefficients.
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Example 2: drawtree and readtree
load noisbump
x = noisbump;
t = wpdec(x,3,'db2');
fig = drawtree(t);

% The last command creates a GUI. 
% The same GUI can be obtained using the main menu and:
% - clicking the Wavelet Packet 1-D button,
% - loading the signal noisbump,
% - choosing the level and the wavelet
% - clicking the decomposition button. 
% You get the following figure.



Simple Use of Objects Through Four Examples

B-9

% From the GUI, you can modify the tree. 
% For example, change Node label from Depth_Position to Index, 
% change Node Action from Visualize to Split_Merge and 
% merge the node 2. 
% You get the following figure.
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% From the command line, you can get the new tree.
newt = readtree(fig);

% From the command line you can modify the new tree;
% then plot it in the same figure.
newt = wpjoin(newt,3);
drawtree(newt,fig);

You can mix previous commands. The GUI associated with the plot command 
is simpler and quicker, but more actions and information are available using 
the full GUI tools related to wavelet packets.

The methods associated with WPTREE objects let you do more complicated 
actions.

Namely, using read and write methods, you can change terminal node 
coefficients.

Let's illustrate this point with the following “funny” example.
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Example 3: A Funny One
load gatlin2
t = wpdec2(X,1,'haar');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following figure.

% Now modify the coefficients of the four terminal nodes.
newt = t;
NBcols = 40;

for node = 1:4
  cfs = read(t,'data',node);
  tmp = cfs(1:end,1:NBcols);
  cfs(1:end,1:NBcols) = cfs(1:end,end-NBcols+1:end);
  cfs(1:end,end-NBcols+1:end) = tmp;
  newt = write(newt,'data',node,cfs);
end
plot(newt)

% Change Node Label from Depth_position to Index and
% click on the node (0). You get the following figure.
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You can use this method for a more useful purpose. Let's see a de-noising 
example.

Example 4: Thresholding Wavelet Packets
load noisbloc
x = noisbloc;
t = wpdec(x,3,'sym4');
plot(t);
% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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% Global thresholding.
t1 = t;
sorh = 'h';
thr = wthrmngr('wp1ddenoGBL','penalhi',t);
cfs = read(t,'data');
cfs = wthresh(cfs,sorh,thr);
t1  = write(t1,'data',cfs);
plot(t1)

% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.



B Object-Oriented Programming

B-14

% Node by node thresholding. 
t2 = t;
sorh = 's';
thr(1) = wthrmngr('wp1ddenoGBL','penalhi',t);
thr(2) = wthrmngr('wp1ddenoGBL','sqtwologswn',t);
tn  = leaves(t);
for k=1:length(tn)
  node = tn(k);
  cfs = read(t,'data',node);
  numthr = rem(node,2)+1;
  cfs = wthresh(cfs,sorh,thr(numthr));
  t2 = write(t2,'data',node,cfs);
end
plot(t2)
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% Change Node Label from Depth_position to Index and
% click the node (0). You get the following plot.
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Detailed Description of Objects in the Wavelet Toolbox™ 
Software

The following sections describe the objects in the Wavelet Toolbox™ software:

• “WTBO Object”

• “NTREE Object” on page B-17

• “DTREE Object” on page B-18

• “WPTREE Object” on page B-20

WTBO Object
Class WTBO (Wavelet Toolbox Object) -- Parent class: none

Fields

Methods

Comments
Since any object in the toolbox is parented by a WTBO object, you can associate 
your own data to an object using the 'ud' field, and then access it.

If Obj is an object (parented by a WTBO object), use

Obj = set(Obj,'ud',MyData)

to define the data.

To retrieve the data, use

MyData = get(O,'ud') 

wtboInfo Object information (Not used)

ud Userdata field

wtbo Constructor for the class WTBO.

get Get WTBO object field contents.

set Set WTBO object field contents.
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NTREE Object
Class NTREE (New Tree) -- Parent class: WTBO 

Fields

Methods

Private

wtbo Parent object

order Tree order

depth Tree depth

spsch Split scheme for nodes

tn Column vector with terminal nodes indices

ntree Constructor for the class NTREE.

findactn Find active nodes.

get Get NTREE object field contents.

nodejoin Recompose node(s).

nodesplt Split (decompose) node(s).

plot Plot NTREE object.

set Set NTREE object field contents.

tlabels Labels for the nodes of a tree.

wtreemgr Manager for NTREE object.

locnumcn Local number for a child node

tabofasc Table of ascendants of nodes
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DTREE Object
Class DTREE (Data Tree) -- Parent class: NTREE 

Fields

Fields Description
allNI is a NBnodes-by-3 array such that

allNI(N,:) = [ind,size(1,1),size(1,2)]

• ind = index of the node N

• size = size of data associated with the node N

terNI is a 1-by-2 cell array such that

• terNI{1} is an NB_TerminalNodes-by-2 array such that

- terNI{1}(N,:) is the size of coefficients associated with the N-th terminal 
node. The nodes are numbered from left to right and from top to bottom. 
The root index is 0.

• terNI{2} is a row vector containing the previous coefficients stored row-wise 
in the above specified order.

ntree Parent object

allNI All Nodes Information

terNI Terminal Nodes Information



Detailed Description of Objects in the Wavelet Toolbox™ Software

B-19

Methods

Comments

• After the constructor, the first set of methods (between line separators) 
might not be overloaded (or only with great care). The second set of methods 
can be overloaded. The third set of methods must be overloaded to 
recompose, reconstruct, or decompose nodes data.

• The method nodejoin calls the method merge, the method nodesplt calls the 
method split, and the method rnodcoef calls the method recons.

• To define nodes information, you must overload the method defaninf. For 
each node N, the basic information is given by
allNI(N,1:3): [index,size(1,1),size(1,2)];

You can add other information by adding columns to allNI.

See the WPTREE object method for an example.

dtree Constructor for the class DTREE.

expand Expand data tree.

fmdtree Field manager for DTREE object.

nodejoin Recompose node.

nodesplt Split (decompose) node.

rnodcoef Reconstruct node coefficients.

defaninf Define node information (all nodes).

get Get DTREE object field contents.

plot Plot DTREE object.

read Read values in DTREE object fields.

set Set DTREE object field contents.

write Write values in DTREE object fields.

merge Merge (recompose) the data of a node.

recons Reconstruct node coefficients.

split Split (decompose) the data of a terminal node.
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• If the method get is not overloaded, using the DTREE get method you can 
get some object field contents (but not all).

For example, if T is parented by a DTREE object of order 2 and if 'Tfield' is 
a field of T, whose content is Tval, [a,b] = get(t,'order','Tfield') returns 
a = 2 and b = 'errorWTBX'. Nevertheless, using a nondocumented method you 
can get the right values. Namely: [a,b] = getwtbo(t,'order','Tfield') 
returns a = 2 and b=Tval.

WPTREE Object
Class WPTREE (Wavelet Packet Tree) -- Parent class: DTREE 

Fields

Fields Description
wavInfo

entInfo

allNI Array(nbnode,5) (field of the dtree parent object) 

dtree Parent object

wavInfo Structure (wavelet information)

entInfo Structure (entropy information)

wavName Wavelet Name

Lo_D Low Decomposition filter

Hi_D High Decomposition filter

Lo_R Low Reconstruction filter

Hi_R High Reconstruction filter

entName Entropy Name

entPar Entropy Parameter
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[ind,size,ent,ento]

Methods

Constructor.

Methods That Overload Those of DTREE Class.

ind Index

size Size of data

ent Entropy

ento Optimal Entropy

Method Description

wptree Constructor for the class WPTREE

Method Description

defaninf Define node information (all nodes).

get Get WPTREE object field contents.

merge Merge (recompose) the data of a node.

read Read values in WPTREE object fields.

recons Reconstruct wavelet packet coefficients.

set Set WPTREE object field contents.

split Split (decompose) the data of a terminal node.

tlabels Labels for the nodes of a wavelet packet tree.

write Write values in WPTREE object fields.
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Proper Methods of WPTREE Class.

Method Description

bestlevt Best level of a wavelet packet tree.

besttree Best wavelet packet tree.

entrupd Entropy update (wavelet packet tree).

wp2wtree Extract wavelet tree from wavelet packet tree.

wpcoef Wavelet packet coefficients.

wpcutree Cut wavelet packet tree.

wpjoin Recompose wavelet packet.

wpplotcf Plot wavelet packets colored coefficients.

wprcoef Reconstruct wavelet packet coefficients.

wprec Wavelet packet reconstruction 1-D.

wprec2 Wavelet packet reconstruction 2-D.

wpsplt Split (decompose) wavelet packet.

wpthcoef Wavelet packet coefficients thresholding.

wpviewcf Plot wavelet packets colored coefficients.
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Advanced Use of Objects
The following sections explain how to extend the toolbox with new objects 
through four examples.

• “Example 1: Building a Wavelet Tree Object (WTREE)”

• “Example 2: Building a Right Wavelet Tree Object (RWVTREE)” on 
page B-24

• “Example 3: Building a Wavelet Tree Object (WVTREE)” on page B-26

• “Example 4: Building a Wavelet Tree Object (EDWTTREE)” on page B-27

Example 1: Building a Wavelet Tree Object (WTREE)
This example creates a new class of objects: WTREE. 

Starting from the class DTREE and overloading the methods split and merge, 
we define a wavelet tree class.

To plot a WTREE, the DTREE plot method is used.

You can have a look at a one-dimensional example in the ex1_wt M-file and at 
a two-dimensional example in the ex2_wt M-file located in the 
toolbox/wavelet/wavedemo directory. These examples can be used directly, 
but they are also useful to learn how to build new object-oriented programming 
functions.

The definition of the new class is described below.

Class WTREE (parent class: DTREE)
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Fields

wavInfo Structure information 

Methods

Example 2: Building a Right Wavelet Tree Object 
(RWVTREE)
This example creates a new class of objects: RWVTREE. 

We define a right wavelet tree class starting from the class WTREE and 
overloading the methods split, merge, and plot (inherited from DTREE).

The plot method shows how to add Node Labels.

You can have a look at a one-dimensional example in the ex1_rwvt M-file and 
at a two-dimensional example in the ex2_rwvt M-file located in the 
toolbox/wavelet/wavedemo directory. These programs can be used directly, 
but they are also useful to learn how to build new object-oriented programming 
functions.

dtree Parent object

dwtMode DWT extension mode

wavInfo Structure (wavelet information)

wavName Wavelet Name

Lo_D Low Decomposition filter

Hi_D High Decomposition filter

Lo_R Low Reconstruction filter

Hi_R High Reconstruction filter

wtree Constructor for the class WTREE.

merge Merge (recompose) the data of a node.

split Split (decompose) the data of a terminal node.
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The definition of the new class is described below.

Class RWVTREE (parent class: WTREE)

Fields

Methods

Running This Example
The following figure is obtained using the example ex1_rwvt and clicking the 
node 14.

The approximations are labeled in yellow and the details are labeled in red. 
The last nodes cannot be split.

dummy Not used

wtree Parent object

rwvtree Constructor for the class RWVTREE.

merge Merge (recompose) the data of a node.

plot Plot RWVTREE object.

split Split (decompose) the data of a terminal node.



B Object-Oriented Programming

B-26

Example 3: Building a Wavelet Tree Object 
(WVTREE)
This example creates a new class of objects: WVTREE. 

We define a wavelet tree class starting from the class WTREE and overloading 
the methods get, plot, and recons (all inherited from DTREE).

The split and merge methods of the class WTREE are used. 

The plot method shows how to add Node Labels and Node Actions.

You can have a look at a one-dimensional example in the ex1_wvt M-file and at 
a two-dimensional example in the ex2_wvt M-file located in the 
toolbox/wavelet/wavedemo directory. These programs can be used directly, 
but they are also useful to learn how to build new object-oriented programming 
functions.

The definition of the new class is described below.

Class WVTREE (parent class: WTREE)

Fields

Methods

Running This Example
The following figure is obtained using the example ex2_wvt and clicking the 
node 2.

The approximations are labeled in yellow and the details are labeled in red. 
The last nodes cannot be split. The title of the figure contains the DWT 
extension mode used ('sym' in the present example).

dummy Not used

wtree Parent object

wvtree Constructor for the class WVTREE.

get Get WVTREE object field contents.

plot Plot WVTREE object.

recons Reconstruct node coefficients.
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Example 4: Building a Wavelet Tree Object 
(EDWTTREE)
This example creates a new class of objects: EDWTTREE. 

We define an ε-DWT tree class starting from the class DTREE and overloading 
the methods merge, plot, recons, and split.

For more information on the ε-DWT, see the section “e-Decimated DWT” on 
page 6-46.

The plot method shows how to add Node Labels, Node Actions, and Tree 
Actions.

You can have a look at the example in the ex1_edwt M-file located in the 
toolbox/wavelet/wavedemo directory. This program can be used directly, but 
it is also useful to learn how to build new object-oriented programming 
functions.

The definition of the new class is described below.

Class EDWTTREE (parent class: DTREE)
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Fields

Fields Description
wavInfo

Methods

Running This Example
The following figure is obtained using the example ex1_edwt, selecting the 
De-noise option in the Tree Action menu and clicking the node 0.

The approximations are labeled in yellow and the details are labeled in red. 
The last nodes cannot be split. 

The title of the figure contains the DWT extension mode used ('sym' in the 
present example) and the name of the de-noising method.

dtree Parent object

dwtMode DWT extension mode

wavInfo Structure (wavelet information)

wavName - Wavelet Name

Lo_D - Low Decomposition filter

Hi_D - High Decomposition filter

Lo_R - Low Reconstruction filter

Hi_R - High Reconstruction filter

edwttree Constructor for the class EDWTTREE.

merge Merge (recompose) the data of a node.

plot Plot EDWTTREE object.

recons Reconstruct node coefficients.

split Split (decompose) the data of a terminal node.
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extracting one-dimensional 2-33
extracting two-dimensional 2-72

decomposition 6-133
definition 1-24
mathematical definition 6-18
notation 6-3
orientation 6-26
reconstruction

from command line 2-34
procedure 1-30

wavelet decomposition 6-5
dilation equation

twin-scale relation 6-20
discontinuities

detecting 3-3
See also breakdowns

discrete Meyer wavelet 6-85

discrete wavelet transform (DWT)
definition 1-24
See also analysis, transforms

display mode 2-D
square 2-81
tree 2-82

downsampling
one-dimensional 6-25
two-dimensional 6-26

DWT
See discrete wavelet transform, transforms

dyadic scale 1-24

E
edge effects

See border distortion
elementary lifting steps (ELS) 6-54
ELS

See lifting
entropy

criterion to select the best decomposition 1-37
definitions 6-145

estimation
default values 6-125
See also function estimation

examples
colored AR(3) noise 4-14
frequency breakdown 4-10
polynomial + white noise 4-16
ramp + colored noise 4-26
ramp + white noise 4-24
real electricity consumption signal 4-34
second-derivative discontinuity 4-22
sine + white noise 4-28
step signal 4-18
sum of sines 4-8
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triangle + a sine 4-30
triangle + a sine + noise 4-32
two proximal discontinuities 4-20
uniform white noise 4-12

exporting from the GUI
complex continuous wavelet 2-28
continuous wavelet 2-17
discrete stationary wavelet 1-D 2-120
discrete stationary wavelet 2-D 2-138
discrete wavelet 2-D 2-88
image extension 2-198
signal extension 2-194
variance adaptive thresholding 2-166
wavelet 1-D 2-58
wavelet density estimation 1-D 2-156
wavelet packets 5-32
wavelet regression estimation 1-D 2-148

extension mode
See border distortion

F
fast multiplication of large matrices 3-28
fast wavelet transform (FWT)

See transforms
filters

FIR
biorthogonal case 6-79
M-file used for construction 7-4

high-pass 6-24
low-pass 6-24
minimum phase 6-77
quadrature mirror

construction example 6-22
definition 1-30

reconstruction 1-30

scaling 6-21
See also twin-scale relations

fixed design
See regression

Fourier analysis
basic function 6-15
introduction 1-9
short-time analysis (STFT) 1-10
windowed 4-11

Fourier coefficients 1-15
Fourier transform 1-15
fractal

properties of signals and images 3-11
redundant methods 6-14

fractional Brownian motion 2-208
frequencies

identifying pure 3-12
parameter 6-141
related to scale 6-68
wavelets interpretation 1-20

frequency breakdown example 4-10
frequency B-spline wavelets 6-87
Full Decomposition Mode 2-47
function estimation 6-116
fusion of images

See image fusion
FWT

See transforms
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G
Gaussian wavelets 6-84
GUI

complex continuous wavelet 2-23
continuous wavelet 2-8
density estimation 2-150
full window resolution A-21
image de-noising using SWT 2-132
image extension / truncation 2-195
local variance adaptive thresholding 2-158
regression estimation 2-140
signal de-noising using SWT 2-114
signal extension / truncation 2-186
using menus A-9
using the mouse A-4
wavelet coefficients selection 1-D 2-168
wavelet coefficients selection 2-D 2-178
wavelet display A-27
wavelet one-dimensional 2-40
wavelet packet 5-7
wavelet packet display A-28
wavelet two-dimensional 2-76

H
Haar wavelet

definition 6-75
presentation 1-41

Heisenberg uncertainty principle 6-15

I
IDWT

See inverse discrete wavelet transform, 
transforms

ILWT
See inverse lifting wavelet transform

image fusion 2-199
images

indexed 2-92
importing to the GUI

complex continuous wavelet 2-28
continuous wavelet 2-17
discrete stationary wavelet 1-D 2-120
discrete stationary wavelet 2-D 2-138
discrete wavelet 2-D 2-88
variance adaptive thresholding 2-166
wavelet 1-D 2-58
wavelet density estimation 1-D 2-156
wavelet packets 5-32
wavelet regression estimation 1-D 2-148

indexed images
image matrix 2-97
matrix indices

shifting up 2-98
inverse discrete wavelet transform (IDWT) 1-29
inverse lifting wavelet transform (ILWT) 6-58
inverse stationary wavelet transform (ISWT) 6-52
ISWT

See inverse stationary wavelet, transforms
iswt command 2-112
iswt2 command 2-130
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L
Laurent polynomial 6-55
lazy wavelet 6-56
level

decomposition 1-27
See also wavelet packet best level

lifting 6-53
dual 6-55
elementary step (ELS) 6-54
primal 6-55
scheme (LS) 6-56

lifting wavelet transform (LWT) 6-58
load

See importing in the GUI
Load data for Density Estimate dialog box 2-152
Load data for Stochastic Design Regression dialog 

box 2-146
Load Signal dialog box

wavelet packets 5-8
wavelets 2-42

local analysis
See analysis

local maxima lines 2-11
long-term evolution

detecting 3-8
LS

See lifting scheme
LWT

See lifting wavelet transform

M
Mallat algorithm 1-24
merge

See wavelet packets
Mexican hat wavelet

definition 6-82
presentation 1-46

Meyer wavelet
definition 6-80
presentation 1-47

M-files
for wavelet families 7-4

minimax 6-102
missing data 4-46
More Display Options button 2-48
More on Residuals for Wavelet 1-D Compression 

window 2-54
Morlet wavelet

definition 6-83
presentation 1-46

multiresolution 6-29
multistep 1-35

N
node

action A-23
noise

ARMA 4-15
colored 4-26
Gaussian 6-97
processing 6-97
removing using GUI option 2-49
suppressing 3-15

See also de-noising
unscaled 6-104
white 6-99
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nondecimated DWT
See transforms (stationary wavelet)

O
objects B-3
orthogonal wavelets 6-5
outliers

suppressing 4-45

P
packets

See wavelet packets
padding

See border distortion
pattern

adapted wavelet 2-216
detection 2-216

perfect reconstruction 6-54
periodic-padding

signal extension 6-37
periodized wavelet transform

See border distortion
polynomial + white noise example 4-16
polyphase matrix 6-55
positions 1-24
predefined wavelet families

type 1 7-4
type 2 7-5
type 3 7-5
type 4 7-6
type 5 7-6

Q
quadrature mirror filters (QMF)

and scaling function 1-34
creating the waveform 1-32
orthfilt function 6-22
system 1-30

R
ramp + colored noise example 4-26
ramp + white noise example 4-24
random design

See regression estimation
real electricity consumption signal example 4-34
reconstruction

approximation 1-30
definition 1-29
detail 1-30
filters 1-30
M-files 6-33
multistep 1-35
one step 6-28
one-dimensional IDWT 6-25
two-dimensional IDWT 6-26

redundancy 6-63
regression estimation

goal 6-121
one-dimensional wavelet 2-140

regularity
definition 6-64
wavelet families 6-90

resemblance index 3-10
residuals display

1-D discrete wavelet compression 2-54
1-D stationary wavelet decomposition 2-118
2-D discrete wavelet compression 2-87
2-D stationary wavelet decomposition 2-136
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reverse biorthogonal wavelets 6-84
RGB images

colormap matrix 2-97
converting from 2-101

S
save

See exporting from the GUI
scal2frq function 3-14
scale

and frequency 1-20
choosing using command line 2-7
choosing using graphical interface 2-23
definition 1-16
dyadic

definition 6-4
for DWT 1-24

to frequency
display 2-13
relationship 6-68
scal2frq function 3-14

scale factor 1-16
scale mode A-18
scaling filters

definition 6-21
notation 6-4

scaling functions
definition 1-34
notation 6-3
shapes 6-6

scalogram 8-454
second-derivative discontinuity example 4-22
self-similarity

detecting 3-10
Separate Mode 2-47
Shannon wavelets 6-88

shift 1-17
See also translation

Show and Scroll Mode 2-47
Show and Scroll Mode (Stem Cfs) 2-47
shrink

See thresholding
signal extensions

border distortion 6-36
signal-end effects

See border distortion
sine + white noise example 4-28
smooth padding

signal extension 6-37
splines

biorthogonal family 6-81
filter lengths 6-29

split
See wavelet packets

Square Mode 2-81
stationary wavelet transform (SWT) 6-46
step signal example 4-18
STFT

See Fourier analysis
sum of sines example 4-8
Superimpose Mode 2-47
support

See wavelet families
SWT

See stationary wavelet transform (SWT)
symlets

definition 6-76
presentation 1-45

symmetrization
signal extension 6-37

symmetry
See wavelet families
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synthesis
inverse transform 6-16
wavelet reconstruction 1-29

T
thresholding

for optimal de-noising 2-37
hard 6-101
interval dependent 6-110
rules

tptr options 6-102
soft 6-101
strategies 6-128
See also de-noising, compression

thselect M-file 6-102
time-scale

See analysis
transforms

continuous versus discrete 6-14
continuous wavelet (CWT) 1-15
discrete wavelet (DWT) 1-24
fast wavelet (FWT) 6-20
integer to integer 6-61
inverse (IDWT)

reconstruction 1-29
synthesis 6-16

inverse lifting wavelet transform (ILWT) 
6-58

inverse stationary wavelet (ISWT) 6-52
lifting wavelet (LWT) 6-58
stationary wavelet (SWT) 6-46
translation invariant 6-46

transient 1-9
See also breakdowns

translation 6-9
using the mouse A-5
See also shift

translation invariance 6-46
Tree Mode

definition 2-47
features 2-82

trees
best 5-11
best-level 6-149
decomposition 1-36
mode

using 2-82
objects B-3
Tree Mode 2-47
wavelet

two-dimensional 6-28
wavelet decomposition 1-27
wavelet packet

notation 6-143
subtrees 6-149

wavelet packet decomposition 1-36
trend 1-9

See also long-term evolution
triangle + a sine + noise example 4-32
triangle + a sine example 4-30
twin-scale relations

definition 6-20
two proximal discontinuities example 4-20

U
uniform white noise example 4-12
upsampling

two-dimensional IDWT 6-28
wavelet reconstruction process 1-29

Using Wavelet Coefficients 2-168
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V
vanishing moments

suppression of signals 6-64
wavelet families 6-90

variance adaptive thresholding 6-109
view axes A-13

W
Wavelet 1-D De-Noising window 3-18
Wavelet 2-D Compression window 3-26
Wavelet 2-D tool

fingerprint example 3-26
wavelet analysis

advantage over Fourier 3-4
as Fourier-type function 3-12
de-noising signals 3-18
revealing signal trends 3-9

wavelet coefficients 1-15
wavelet families

adding new 7-2
criteria 6-73
full name 7-2
notation 6-3
properties (Part 1) 6-90
properties (Part 2) 6-92
regularity

advantage 6-73
definition 6-64

short name 7-3
support 6-73
symmetry 6-73
vanishing moments 6-73

wavelet filters
notation 6-4

wavelet notation
associated family 6-4

Wavelet Packet 1-D Compression window 5-13
Wavelet Packet 1-D menu item 5-7
Wavelet Packet 1-D tool

starting 5-7
Wavelet Packet 2-D Compression window 5-28
wavelet packets

analysis
definition 1-36

and wavelet analysis
differences 6-134

atoms 6-140
bases 6-143
best level decomposition 6-149
best level feature 1-37
best tree 5-11
best tree feature 1-37
besttree function 5-4
building 6-138
compression 6-151
computing the best tree 5-20
decomposition 6-150
decomposition tree

complete binary tree 1-36
subtrees 6-149

definition 6-133
de-noising

ideas 6-151
using SURE 5-16

finding best level 5-4
frequency order 6-141
from wavelets to 6-133
merge 6-144
natural order 6-141
objects B-3
organization 6-143
selecting threshold for compression 5-13
split 6-144
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tree
notation 6-143

wavelets
"lazy" 6-56
adapted to a pattern 2-216
adding new 7-2
applications 3-1
associated family 6-8
Battle-Lemarie 6-81
biorthogonal

definition 6-78
presentation 1-43

candidates 6-65
coiflets

definition 6-77
presentation 1-45

complex frequency B-spline 6-87
complex Gaussian 6-86
complex Morlet 6-86
complex Shannon 6-88
Daubechies

definition 6-74
presentation 1-42

decomposition tree 1-27
defining order 7-4
determining type 7-3
discrete Meyer 6-85
families 1-39
Gaussian 6-84
Haar

definition 6-75
presentation 1-41

history 1-38
lifted 6-56
Mexican hat

definition 6-82
presentation 1-46

Meyer
definition 6-80
presentation 1-47

Morlet
definition 6-83
presentation 1-46

notation 6-3
one-dimensional analysis 6-6
one-dimensional capabilities

objects 6-33
table 2-29

organization 6-12
relationship of filters to 1-32
reverse biorthogonal 6-84
shapes 6-6
shifted 1-16
symlets

definition 6-76
presentation 1-45

translation 6-9
See also shift

tree
one-dimensional 1-36
two-dimensional 6-28

two-dimensional 6-8
two-dimensional analysis 6-6
two-dimensional capabilities

objects 6-34
table 2-66

vanishing moments
number of 6-73
suppression of signals 6-64

wavelets.asc file 7-15
wavelets.inf file 7-15
wavelets.prv file 7-15
wavemngr command 7-2
wscalogram 8-454
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wthresh command 2-112

Z
zero-padding

signal extension 6-36
zoom 2-15
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